Portability GHC only experimental ekmett@gmail.com None

Description

Higher order derivatives via a "dual number tower".

Synopsis

# Taylor Series

taylor :: Fractional a => (forall s. Mode s => AD s a -> AD s a) -> a -> a -> [a]Source

taylor0 :: Fractional a => (forall s. Mode s => AD s a -> AD s a) -> a -> a -> [a]Source

# Maclaurin Series

maclaurin :: Fractional a => (forall s. Mode s => AD s a -> AD s a) -> a -> [a]Source

maclaurin0 :: Fractional a => (forall s. Mode s => AD s a -> AD s a) -> a -> [a]Source

# Derivatives

diff :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> aSource

diff' :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> (a, a)Source

diffs :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> [a]Source

diffs0 :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> [a]Source

diffsF :: (Functor f, Num a) => (forall s. Mode s => AD s a -> f (AD s a)) -> a -> f [a]Source

diffs0F :: (Functor f, Num a) => (forall s. Mode s => AD s a -> f (AD s a)) -> a -> f [a]Source

# Directional Derivatives

du :: (Functor f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f (a, a) -> aSource

du' :: (Functor f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f (a, a) -> (a, a)Source

dus :: (Functor f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f [a] -> [a]Source

dus0 :: (Functor f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f [a] -> [a]Source

duF :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f (a, a) -> g aSource

duF' :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f (a, a) -> g (a, a)Source

dusF :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f [a] -> g [a]Source

dus0F :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f [a] -> g [a]Source