{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) Edward Kmett 2010-2015 -- License : BSD3 -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : GHC only -- -- Root finding using Halley's rational method (the second in -- the class of Householder methods). Assumes the function is three -- times continuously differentiable and converges cubically when -- progress can be made. -- ----------------------------------------------------------------------------- module Numeric.AD.Rank1.Halley ( -- * Halley's Method (Tower AD) findZero , findZeroNoEq , inverse , inverseNoEq , fixedPoint , fixedPointNoEq , extremum , extremumNoEq ) where import Prelude hiding (all) import Numeric.AD.Internal.Forward (Forward) import Numeric.AD.Internal.On import Numeric.AD.Internal.Tower (Tower) import Numeric.AD.Mode import Numeric.AD.Rank1.Tower (diffs0) import Numeric.AD.Rank1.Forward (diff) import Numeric.AD.Internal.Combinators (takeWhileDifferent) -- $setup -- >>> import Data.Complex -- | The 'findZero' function finds a zero of a scalar function using -- Halley's method; its output is a stream of increasingly accurate -- results. (Modulo the usual caveats.) If the stream becomes constant -- ("it converges"), no further elements are returned. -- -- Examples: -- -- >>> take 10 $ findZero (\x->x^2-4) 1 -- [1.0,1.8571428571428572,1.9997967892704736,1.9999999999994755,2.0] -- -- >>> last $ take 10 $ findZero ((+1).(^2)) (1 :+ 1) -- 0.0 :+ 1.0 findZero :: (Fractional a, Eq a) => (Tower a -> Tower a) -> a -> [a] findZero f = takeWhileDifferent . findZeroNoEq f {-# INLINE findZero #-} -- | The 'findZeroNoEq' function behaves the same as 'findZero' except that it -- doesn't truncate the list once the results become constant. This means it -- can be used with types without an 'Eq' instance. findZeroNoEq :: Fractional a => (Tower a -> Tower a) -> a -> [a] findZeroNoEq f = iterate go where go x = xn where (y:y':y'':_) = diffs0 f x xn = x - 2*y*y'/(2*y'*y'-y*y'') -- 9.606671960457536 bits error -- = x - recip (y'/y - y''/ y') -- "improved error" = 6.640625e-2 bits -- = x - y' / (y'/y/y' - y''/2) -- "improved error" = 1.4 #ifdef HERBIE {-# ANN findZeroNoEq "NoHerbie" #-} #endif {-# INLINE findZeroNoEq #-} -- | The 'inverse' function inverts a scalar function using -- Halley's method; its output is a stream of increasingly accurate -- results. (Modulo the usual caveats.) If the stream becomes constant -- ("it converges"), no further elements are returned. -- -- Note: the @take 10 $ inverse sqrt 1 (sqrt 10)@ example that works for Newton's method -- fails with Halley's method because the preconditions do not hold! inverse :: (Fractional a, Eq a) => (Tower a -> Tower a) -> a -> a -> [a] inverse f x0 = takeWhileDifferent . inverseNoEq f x0 {-# INLINE inverse #-} -- | The 'inverseNoEq' function behaves the same as 'inverse' except that it -- doesn't truncate the list once the results become constant. This means it -- can be used with types without an 'Eq' instance. inverseNoEq :: Fractional a => (Tower a -> Tower a) -> a -> a -> [a] inverseNoEq f x0 y = findZeroNoEq (\x -> f x - auto y) x0 {-# INLINE inverseNoEq #-} -- | The 'fixedPoint' function find a fixedpoint of a scalar -- function using Halley's method; its output is a stream of -- increasingly accurate results. (Modulo the usual caveats.) -- -- If the stream becomes constant ("it converges"), no further -- elements are returned. -- -- >>> last $ take 10 $ fixedPoint cos 1 -- 0.7390851332151607 fixedPoint :: (Fractional a, Eq a) => (Tower a -> Tower a) -> a -> [a] fixedPoint f = takeWhileDifferent . fixedPointNoEq f {-# INLINE fixedPoint #-} -- | The 'fixedPointNoEq' function behaves the same as 'fixedPoint' except that -- it doesn't truncate the list once the results become constant. This means it -- can be used with types without an 'Eq' instance. fixedPointNoEq :: Fractional a => (Tower a -> Tower a) -> a -> [a] fixedPointNoEq f = findZeroNoEq (\x -> f x - x) {-# INLINE fixedPointNoEq #-} -- | The 'extremum' function finds an extremum of a scalar -- function using Halley's method; produces a stream of increasingly -- accurate results. (Modulo the usual caveats.) If the stream becomes -- constant ("it converges"), no further elements are returned. -- -- >>> take 10 $ extremum cos 1 -- [1.0,0.29616942658570555,4.59979519460002e-3,1.6220740159042513e-8,0.0] extremum :: (Fractional a, Eq a) => (On (Forward (Tower a)) -> On (Forward (Tower a))) -> a -> [a] extremum f = takeWhileDifferent . extremumNoEq f {-# INLINE extremum #-} -- | The 'extremumNoEq' function behaves the same as 'extremum' except that it -- doesn't truncate the list once the results become constant. This means it -- can be used with types without an 'Eq' instance. extremumNoEq :: Fractional a => (On (Forward (Tower a)) -> On (Forward (Tower a))) -> a -> [a] extremumNoEq f = findZeroNoEq (diff (off . f . On)) {-# INLINE extremumNoEq #-}