{-# LANGUAGE PatternGuards, Rank2Types, ScopedTypeVariables, CPP #-} -- | -- Module: Data.Aeson.Generic -- Copyright: (c) 2011, 2012, 2013 Bryan O'Sullivan -- (c) 2011 MailRank, Inc. -- (c) 2008, 2009 Lennart Augustsson -- License: BSD3 -- Maintainer: Bryan O'Sullivan -- Stability: DEPRECATED -- Portability: portable -- -- JSON handling using 'Data.Generics'. -- -- This is based on the 'Text.JSON.Generic' package originally written -- by Lennart Augustsson. module Data.Aeson.Generic {-# DEPRECATED "This module will be /REMOVED/ in version 0.7.0.0. Please switch to GHC generics or Data.Aeson.TH instead. These alternatives are less buggy, faster, and more configurable." #-} ( -- * Decoding and encoding decode , decode' , encode -- * Lower-level conversion functions , fromJSON , toJSON ) where import Control.Applicative ((<$>)) import Control.Arrow (first) import Control.Monad.State.Strict import Data.Aeson.Functions hiding (decode) import Data.Aeson.Types hiding (FromJSON(..), ToJSON(..), fromJSON) import Data.Attoparsec.Number (Number) import Data.Generics import Data.Hashable (Hashable) import Data.Int (Int8, Int16, Int32, Int64) import Data.IntSet (IntSet) import Data.Maybe (fromJust) import Data.Text (Text, pack, unpack) import Data.Text.Encoding (encodeUtf8) import Data.Time.Clock (UTCTime) import Data.Word (Word, Word8, Word16, Word32, Word64) import Data.Aeson.Parser.Internal (decodeWith, json, json') import qualified Data.Aeson.Encode as E import qualified Data.Aeson.Functions as F import qualified Data.Aeson.Types as T import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as L import qualified Data.HashMap.Strict as H import qualified Data.Map as Map import qualified Data.Set as Set import qualified Data.Text as DT import qualified Data.Text.Lazy as LT import qualified Data.Traversable as T import qualified Data.Vector as V -- | Efficiently serialize a JSON value as a lazy 'L.ByteString'. encode :: (Data a) => a -> L.ByteString encode = E.encode . toJSON {-# INLINE encode #-} -- | Efficiently deserialize a JSON value from a lazy 'L.ByteString'. -- If this fails due to incomplete or invalid input, 'Nothing' is -- returned. -- -- This function parses immediately, but defers conversion. See -- 'json' for details. decode :: (Data a) => L.ByteString -> Maybe a decode = decodeWith json fromJSON {-# INLINE decode #-} -- | Efficiently deserialize a JSON value from a lazy 'L.ByteString'. -- If this fails due to incomplete or invalid input, 'Nothing' is -- returned. -- -- This function parses and performs conversion immediately. See -- 'json'' for details. decode' :: (Data a) => L.ByteString -> Maybe a decode' = decodeWith json' fromJSON {-# INLINE decode' #-} type T a = a -> Value toJSON :: (Data a) => a -> Value toJSON = toJSON_generic `ext1Q` maybe Null toJSON `ext1Q` list `ext1Q` vector `ext1Q` set `ext2Q'` mapAny `ext2Q'` hashMapAny -- Use the standard encoding for all base types. `extQ` (T.toJSON :: T Integer) `extQ` (T.toJSON :: T Int) `extQ` (T.toJSON :: T Int8) `extQ` (T.toJSON :: T Int16) `extQ` (T.toJSON :: T Int32) `extQ` (T.toJSON :: T Int64) `extQ` (T.toJSON :: T Word) `extQ` (T.toJSON :: T Word8) `extQ` (T.toJSON :: T Word16) `extQ` (T.toJSON :: T Word32) `extQ` (T.toJSON :: T Word64) `extQ` (T.toJSON :: T Double) `extQ` (T.toJSON :: T Number) `extQ` (T.toJSON :: T Float) `extQ` (T.toJSON :: T Rational) `extQ` (T.toJSON :: T Char) `extQ` (T.toJSON :: T Text) `extQ` (T.toJSON :: T LT.Text) `extQ` (T.toJSON :: T String) `extQ` (T.toJSON :: T B.ByteString) `extQ` (T.toJSON :: T L.ByteString) `extQ` (T.toJSON :: T T.Value) `extQ` (T.toJSON :: T DotNetTime) `extQ` (T.toJSON :: T UTCTime) `extQ` (T.toJSON :: T IntSet) `extQ` (T.toJSON :: T Bool) `extQ` (T.toJSON :: T ()) --`extQ` (T.toJSON :: T Ordering) where list xs = Array . V.fromList . map toJSON $ xs vector v = Array . V.map toJSON $ v set s = Array . V.fromList . map toJSON . Set.toList $ s mapAny m | tyrep == typeOf DT.empty = remap id | tyrep == typeOf LT.empty = remap LT.toStrict | tyrep == typeOf "" = remap pack | tyrep == typeOf B.empty = remap F.decode | tyrep == typeOf L.empty = remap strict | otherwise = modError "toJSON" $ "cannot convert map keyed by type " ++ show tyrep where tyrep = typeOf . head . Map.keys $ m remap f = Object . mapHashKeyVal (f . fromJust . cast) toJSON $ m hashMapAny m | tyrep == typeOf DT.empty = remap id | tyrep == typeOf LT.empty = remap LT.toStrict | tyrep == typeOf "" = remap pack | tyrep == typeOf B.empty = remap F.decode | tyrep == typeOf L.empty = remap strict | otherwise = modError "toJSON" $ "cannot convert map keyed by type " ++ show tyrep where tyrep = typeOf . head . H.keys $ m remap f = Object . mapKeyVal (f . fromJust . cast) toJSON $ m toJSON_generic :: (Data a) => a -> Value toJSON_generic = generic where -- Generic encoding of an algebraic data type. generic a = case dataTypeRep (dataTypeOf a) of -- No constructor, so it must be an error value. Code -- it anyway as Null. AlgRep [] -> Null -- Elide a single constructor and just code the arguments. AlgRep [c] -> encodeArgs c (gmapQ toJSON a) -- For multiple constructors, make an object with a -- field name that is the constructor (except lower -- case) and the data is the arguments encoded. AlgRep _ -> encodeConstr (toConstr a) (gmapQ toJSON a) rep -> err (dataTypeOf a) rep where err dt r = modError "toJSON" $ "not AlgRep " ++ show r ++ "(" ++ show dt ++ ")" -- Encode nullary constructor as a string. -- Encode non-nullary constructors as an object with the constructor -- name as the single field and the arguments as the value. -- Use an array if the are no field names, but elide singleton arrays, -- and use an object if there are field names. encodeConstr c [] = String . constrString $ c encodeConstr c as = object [(constrString c, encodeArgs c as)] constrString = pack . showConstr encodeArgs c = encodeArgs' (constrFields c) encodeArgs' [] [j] = j encodeArgs' [] js = Array . V.fromList $ js encodeArgs' ns js = object $ zip (map pack ns) js fromJSON :: (Data a) => Value -> Result a fromJSON = parse parseJSON type F a = Parser a parseJSON :: (Data a) => Value -> Parser a parseJSON j = parseJSON_generic j `ext1R` maybeP `ext1R` list `ext1R` vector `ext2R'` mapAny `ext2R'` hashMapAny -- Use the standard encoding for all base types. `extR` (value :: F Integer) `extR` (value :: F Int) `extR` (value :: F Int8) `extR` (value :: F Int16) `extR` (value :: F Int32) `extR` (value :: F Int64) `extR` (value :: F Word) `extR` (value :: F Word8) `extR` (value :: F Word16) `extR` (value :: F Word32) `extR` (value :: F Word64) `extR` (value :: F Double) `extR` (value :: F Number) `extR` (value :: F Float) `extR` (value :: F Rational) `extR` (value :: F Char) `extR` (value :: F Text) `extR` (value :: F LT.Text) `extR` (value :: F String) `extR` (value :: F B.ByteString) `extR` (value :: F L.ByteString) `extR` (value :: F T.Value) `extR` (value :: F DotNetTime) `extR` (value :: F UTCTime) `extR` (value :: F IntSet) `extR` (value :: F Bool) `extR` (value :: F ()) where value :: (T.FromJSON a) => Parser a value = T.parseJSON j maybeP :: (Data a) => Parser (Maybe a) maybeP = if j == Null then return Nothing else Just <$> parseJSON j list :: (Data a) => Parser [a] list = V.toList <$> parseJSON j vector :: (Data a) => Parser (V.Vector a) vector = case j of Array js -> V.mapM parseJSON js _ -> myFail mapAny :: forall e f. (Data e, Data f) => Parser (Map.Map f e) mapAny | tyrep == typeOf DT.empty = process id | tyrep == typeOf LT.empty = process LT.fromStrict | tyrep == typeOf "" = process DT.unpack | tyrep == typeOf B.empty = process encodeUtf8 | tyrep == typeOf L.empty = process lazy | otherwise = myFail where process f = maybe myFail return . cast =<< parseWith f parseWith :: (Ord c) => (Text -> c) -> Parser (Map.Map c e) parseWith f = case j of Object js -> Map.fromList . map (first f) . H.toList <$> T.mapM parseJSON js _ -> myFail tyrep = typeOf (undefined :: f) hashMapAny :: forall e f. (Data e, Data f) => Parser (H.HashMap f e) hashMapAny | tyrep == typeOf DT.empty = process id | tyrep == typeOf LT.empty = process LT.fromStrict | tyrep == typeOf "" = process DT.unpack | tyrep == typeOf B.empty = process encodeUtf8 | tyrep == typeOf L.empty = process lazy | otherwise = myFail where process f = maybe myFail return . cast =<< parseWith f parseWith :: (Eq c, Hashable c) => (Text -> c) -> Parser (H.HashMap c e) parseWith f = case j of Object js -> mapKey f <$> T.mapM parseJSON js _ -> myFail tyrep = typeOf (undefined :: f) myFail = modFail "parseJSON" $ "bad data: " ++ show j parseJSON_generic :: (Data a) => Value -> Parser a parseJSON_generic j = generic where typ = dataTypeOf $ resType generic generic = case dataTypeRep typ of AlgRep [] -> case j of Null -> return (modError "parseJSON" "empty type") _ -> modFail "parseJSON" "no-constr bad data" AlgRep [_] -> decodeArgs (indexConstr typ 1) j AlgRep _ -> do (c, j') <- getConstr typ j; decodeArgs c j' rep -> modFail "parseJSON" $ show rep ++ "(" ++ show typ ++ ")" getConstr t (Object o) | [(s, j')] <- fromJSObject o = do c <- readConstr' t s return (c, j') getConstr t (String js) = do c <- readConstr' t (unpack js) return (c, Null) -- handle nullary ctor getConstr _ _ = modFail "parseJSON" "bad constructor encoding" readConstr' t s = maybe (modFail "parseJSON" $ "unknown constructor: " ++ s ++ " " ++ show t) return $ readConstr t s decodeArgs c0 = go (numConstrArgs (resType generic) c0) c0 (constrFields c0) where go 0 c _ Null = construct c [] go 1 c [] jd = construct c [jd] -- unary constructor go _ c [] (Array js) = construct c (V.toList js) -- no field names -- FIXME? We could allow reading an array into a constructor -- with field names. go _ c fs@(_:_) (Object o) = selectFields o fs >>= construct c -- field names go _ c _ jd = modFail "parseJSON" $ "bad decodeArgs data " ++ show (c, jd) fromJSObject = map (first unpack) . H.toList -- Build the value by stepping through the list of subparts. construct c = evalStateT $ fromConstrM f c where f :: (Data a) => StateT [Value] Parser a f = do js <- get case js of [] -> lift $ modFail "construct" "empty list" (j':js') -> do put js'; lift $ parseJSON j' -- Select the named fields from a JSON object. selectFields fjs = mapM $ \f -> maybe (modFail "parseJSON" $ "field does not exist " ++ f) return $ H.lookup (pack f) fjs -- Count how many arguments a constructor has. The value x is -- used to determine what type the constructor returns. numConstrArgs :: (Data a) => a -> Constr -> Int numConstrArgs x c = execState (fromConstrM f c `asTypeOf` return x) 0 where f = do modify (+1); return undefined resType :: MonadPlus m => m a -> a resType _ = modError "parseJSON" "resType" modFail :: (Monad m) => String -> String -> m a modFail func err = fail $ "Data.Aeson.Generic." ++ func ++ ": " ++ err modError :: String -> String -> a modError func err = error $ "Data.Aeson.Generic." ++ func ++ ": " ++ err -- Type extension for binary type constructors. -- | Flexible type extension #if MIN_VERSION_base(4,7,0) ext2' :: (Data a, Typeable t) #else ext2' :: (Data a, Typeable2 t) #endif => c a -> (forall d1 d2. (Data d1, Data d2) => c (t d1 d2)) -> c a ext2' def ext = maybe def id (dataCast2 ext) -- | Type extension of queries for type constructors #if MIN_VERSION_base(4,7,0) ext2Q' :: (Data d, Typeable t) #else ext2Q' :: (Data d, Typeable2 t) #endif => (d -> q) -> (forall d1 d2. (Data d1, Data d2) => t d1 d2 -> q) -> d -> q ext2Q' def ext = unQ ((Q def) `ext2'` (Q ext)) -- | Type extension of readers for type constructors #if MIN_VERSION_base(4,7,0) ext2R' :: (Monad m, Data d, Typeable t) #else ext2R' :: (Monad m, Data d, Typeable2 t) #endif => m d -> (forall d1 d2. (Data d1, Data d2) => m (t d1 d2)) -> m d ext2R' def ext = unR ((R def) `ext2'` (R ext)) -- | The type constructor for queries newtype Q q x = Q { unQ :: x -> q } -- | The type constructor for readers newtype R m x = R { unR :: m x }