-- | -- Module : Simulation.Aivika.Signal.Random -- Copyright : Copyright (c) 2009-2017, David Sorokin -- License : BSD3 -- Maintainer : David Sorokin -- Stability : experimental -- Tested with: GHC 8.0.1 -- -- This module defines random signals of events, which are useful -- for describing the input of the model. -- module Simulation.Aivika.Signal.Random (-- * Signal of Random Events newRandomSignal, newRandomUniformSignal, newRandomUniformIntSignal, newRandomTriangularSignal, newRandomNormalSignal, newRandomLogNormalSignal, newRandomExponentialSignal, newRandomErlangSignal, newRandomPoissonSignal, newRandomBinomialSignal, newRandomGammaSignal, newRandomBetaSignal, newRandomWeibullSignal, newRandomDiscreteSignal) where import Control.Monad import Control.Monad.Trans import Simulation.Aivika.Generator import Simulation.Aivika.Parameter import Simulation.Aivika.Parameter.Random import Simulation.Aivika.Simulation import Simulation.Aivika.Dynamics import Simulation.Aivika.Event import Simulation.Aivika.Composite import Simulation.Aivika.Process import Simulation.Aivika.Signal import Simulation.Aivika.Statistics import Simulation.Aivika.Arrival -- | Return a signal of random events that arrive with the specified delay. newRandomSignal :: Parameter (Double, a) -- ^ compute a pair of the delay and event of type @a@ -> Composite (Signal (Arrival a)) -- ^ the computation that returns a signal emitting the delayed events newRandomSignal delay = do source <- liftSimulation newSignalSource let loop t0 = do (delay, a) <- liftParameter delay when (delay > 0) $ holdProcess delay t2 <- liftDynamics time let arrival = Arrival { arrivalValue = a, arrivalTime = t2, arrivalDelay = case t0 of Nothing -> Nothing Just t0 -> Just delay } liftEvent $ triggerSignal source arrival loop (Just t2) pid <- liftSimulation newProcessId liftEvent $ runProcessUsingId pid $ loop Nothing disposableComposite $ DisposableEvent $ cancelProcessWithId pid return $ publishSignal source -- | Create a new signal with random delays distributed uniformly. newRandomUniformSignal :: Double -- ^ the minimum delay -> Double -- ^ the maximum delay -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomUniformSignal min max = newRandomSignal $ randomUniform min max >>= \x -> return (x, x) -- | Create a new signal with integer random delays distributed uniformly. newRandomUniformIntSignal :: Int -- ^ the minimum delay -> Int -- ^ the maximum delay -> Composite (Signal (Arrival Int)) -- ^ the computation of signal emitting random events with the delays generated newRandomUniformIntSignal min max = newRandomSignal $ randomUniformInt min max >>= \x -> return (fromIntegral x, x) -- | Create a new signal with random delays having the triangular distribution. newRandomTriangularSignal :: Double -- ^ the minimum delay -> Double -- ^ the median of the delay -> Double -- ^ the maximum delay -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomTriangularSignal min median max = newRandomSignal $ randomTriangular min median max >>= \x -> return (x, x) -- | Create a new signal with random delays distributed normally. newRandomNormalSignal :: Double -- ^ the mean delay -> Double -- ^ the delay deviation -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomNormalSignal mu nu = newRandomSignal $ randomNormal mu nu >>= \x -> return (x, x) -- | Create a new signal with random delays having the lognormal distribution. newRandomLogNormalSignal :: Double -- ^ the mean of a normal distribution which -- this distribution is derived from -> Double -- ^ the deviation of a normal distribution which -- this distribution is derived from -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomLogNormalSignal mu nu = newRandomSignal $ randomLogNormal mu nu >>= \x -> return (x, x) -- | Return a new signal with random delays distibuted exponentially with the specified mean -- (the reciprocal of the rate). newRandomExponentialSignal :: Double -- ^ the mean delay (the reciprocal of the rate) -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomExponentialSignal mu = newRandomSignal $ randomExponential mu >>= \x -> return (x, x) -- | Return a new signal with random delays having the Erlang distribution with the specified -- scale (the reciprocal of the rate) and shape parameters. newRandomErlangSignal :: Double -- ^ the scale (the reciprocal of the rate) -> Int -- ^ the shape -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomErlangSignal beta m = newRandomSignal $ randomErlang beta m >>= \x -> return (x, x) -- | Return a new signal with random delays having the Poisson distribution with -- the specified mean. newRandomPoissonSignal :: Double -- ^ the mean delay -> Composite (Signal (Arrival Int)) -- ^ the computation of signal emitting random events with the delays generated newRandomPoissonSignal mu = newRandomSignal $ randomPoisson mu >>= \x -> return (fromIntegral x, x) -- | Return a new signal with random delays having the binomial distribution with the specified -- probability and trials. newRandomBinomialSignal :: Double -- ^ the probability -> Int -- ^ the number of trials -> Composite (Signal (Arrival Int)) -- ^ the computation of signal emitting random events with the delays generated newRandomBinomialSignal prob trials = newRandomSignal $ randomBinomial prob trials >>= \x -> return (fromIntegral x, x) -- | Return a new signal with random delays having the Gamma distribution by the specified -- shape and scale. newRandomGammaSignal :: Double -- ^ the shape -> Double -- ^ the scale (a reciprocal of the rate) -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomGammaSignal kappa theta = newRandomSignal $ randomGamma kappa theta >>= \x -> return (x, x) -- | Return a new signal with random delays having the Beta distribution by the specified -- shape parameters (alpha and beta). newRandomBetaSignal :: Double -- ^ the shape (alpha) -> Double -- ^ the shape (beta) -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomBetaSignal alpha beta = newRandomSignal $ randomBeta alpha beta >>= \x -> return (x, x) -- | Return a new signal with random delays having the Weibull distribution by the specified -- shape and scale. newRandomWeibullSignal :: Double -- ^ shape -> Double -- ^ scale -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomWeibullSignal alpha beta = newRandomSignal $ randomWeibull alpha beta >>= \x -> return (x, x) -- | Return a new signal with random delays having the specified discrete distribution. newRandomDiscreteSignal :: DiscretePDF Double -- ^ the discrete probability density function -> Composite (Signal (Arrival Double)) -- ^ the computation of signal emitting random events with the delays generated newRandomDiscreteSignal dpdf = newRandomSignal $ randomDiscrete dpdf >>= \x -> return (x, x)