Copyright  Copyright (c) 20092016 David Sorokin <david.sorokin@gmail.com> 

License  BSD3 
Maintainer  David Sorokin <david.sorokin@gmail.com> 
Stability  experimental 
Safe Haskell  Safe 
Language  Haskell2010 
Tested with: GHC 8.0.1
It defines the implementation details of some types. You should never use it in ordinary simulation models. The module is destined for those who will extend the library.
 data Specs m = Specs {}
 data Method
 data Run m = Run {
 runSpecs :: Specs m
 runIndex :: Int
 runCount :: Int
 runEventQueue :: EventQueue m
 runGenerator :: Generator m
 data Point m = Point {
 pointSpecs :: Specs m
 pointRun :: Run m
 pointTime :: Double
 pointIteration :: Int
 pointPhase :: Int
 newtype Parameter m a = Parameter (Run m > m a)
 newtype Simulation m a = Simulation (Run m > m a)
 newtype Dynamics m a = Dynamics (Point m > m a)
 newtype Event m a = Event (Point m > m a)
 data EventProcessing
 class EventQueueing m where
 data EventQueue m :: *
 invokeParameter :: Run m > Parameter m a > m a
 invokeSimulation :: Run m > Simulation m a > m a
 invokeDynamics :: Point m > Dynamics m a > m a
 invokeEvent :: Point m > Event m a > m a
Documentation
It defines the simulation specs.
Specs  

It defines the integration method.
Euler  Euler's method 
RungeKutta2  the 2nd order RungeKutta method 
RungeKutta4  the 4th order RungeKutta method 
It indentifies the simulation run.
Run  

It defines the simulation point appended with the additional information.
Point  

newtype Parameter m a Source #
The Parameter
monad that allows specifying the model parameters.
For example, they can be used when running the MonteCarlo simulation.
In general, this monad is very useful for representing a computation which is external relative to the model itself.
Monad m => ParameterLift Parameter m Source #  
MonadDES m => ResultComputing Parameter m Source #  
newtype Simulation m a Source #
A value in the Simulation
monad represents a computation
within the simulation run.
Simulation (Run m > m a) 
Monad m => SimulationLift Simulation m Source #  
MonadDES m => ResultComputing Simulation m Source #  
A value in the Dynamics
monad represents a polymorphic time varying function
defined in the whole spectrum of time values as a single entity. It is ideal for
numerical approximating integrals.
Monad m => DynamicsLift Dynamics m Source #  
MonadDES m => ResultComputing Dynamics m Source #  
A value in the Event
monad transformer represents a polymorphic time varying
function which is strongly synchronized with the event queue.
data EventProcessing Source #
Defines how the events are processed.
CurrentEvents  either process all earlier and then current events,
or raise an error if the current simulation time is less
than the actual time of the event queue (safe within
the 
EarlierEvents  either process all earlier events not affecting
the events at the current simulation time,
or raise an error if the current simulation time is less
than the actual time of the event queue (safe within
the 
CurrentEventsOrFromPast  either process all earlier and then current events, or do nothing if the current simulation time is less than the actual time of the event queue (do not use unless the documentation states the opposite) 
EarlierEventsOrFromPast  either process all earlier events, or do nothing if the current simulation time is less than the actual time of the event queue (do not use unless the documentation states the opposite) 
class EventQueueing m where Source #
A type class of monads that allow enqueueing the events.
data EventQueue m :: * Source #
It represents the event queue.
newEventQueue :: Specs m > m (EventQueue m) Source #
Create a new event queue by the specified specs with simulation session.
enqueueEvent :: Double > Event m () > Event m () Source #
Enqueue the event which must be actuated at the specified time.
runEvent :: Event m a > Dynamics m a Source #
Run the EventT
computation in the current simulation time
within the DynamicsT
computation involving all pending
CurrentEvents
in the processing too.
runEventWith :: EventProcessing > Event m a > Dynamics m a Source #
Run the EventT
computation in the current simulation time
within the DynamicsT
computation specifying what pending events
should be involved in the processing.
eventQueueCount :: Event m Int Source #
Return the number of pending events that should be yet actuated.
invokeSimulation :: Run m > Simulation m a > m a Source #
Invoke the Simulation
computation.