module Numeric.Group.Multiplicative
( MultiplicativeGroup(..)
) where
import Prelude hiding ((*), recip, (/),(^))
import Numeric.Semigroup.Multiplicative
import Numeric.Monoid.Multiplicative
infixr 8 ^
infixl 7 /, \\
class Unital r => MultiplicativeGroup r where
recip :: r -> r
(/) :: r -> r -> r
(\\) :: r -> r -> r
(^) :: Integral n => r -> n -> r
recip a = one / a
a / b = a * recip b
a \\ b = recip a * b
x0 ^ y0 = case compare y0 0 of
LT -> f (recip x0) (negate y0)
EQ -> one
GT -> f x0 y0
where
f x y
| even y = f (x * x) (y `quot` 2)
| y == 1 = x
| otherwise = g (x * x) ((y 1) `quot` 2) x
g x y z
| even y = g (x * x) (y `quot` 2) z
| y == 1 = x * z
| otherwise = g (x * x) ((y 1) `quot` 2) (x * z)
instance MultiplicativeGroup () where
_ / _ = ()
recip _ = ()
_ \\ _ = ()
_ ^ _ = ()
instance (MultiplicativeGroup a, MultiplicativeGroup b) => MultiplicativeGroup (a,b) where
recip (a,b) = (recip a, recip b)
(a,b) / (i,j) = (a/i,b/j)
(a,b) \\ (i,j) = (a\\i,b\\j)
(a,b) ^ n = (a^n,b^n)
instance (MultiplicativeGroup a, MultiplicativeGroup b, MultiplicativeGroup c) => MultiplicativeGroup (a,b,c) where
recip (a,b,c) = (recip a, recip b, recip c)
(a,b,c) / (i,j,k) = (a/i,b/j,c/k)
(a,b,c) \\ (i,j,k) = (a\\i,b\\j,c\\k)
(a,b,c) ^ n = (a^n,b^n,c^n)
instance (MultiplicativeGroup a, MultiplicativeGroup b, MultiplicativeGroup c, MultiplicativeGroup d) => MultiplicativeGroup (a,b,c,d) where
recip (a,b,c,d) = (recip a, recip b, recip c, recip d)
(a,b,c,d) / (i,j,k,l) = (a/i,b/j,c/k,d/l)
(a,b,c,d) \\ (i,j,k,l) = (a\\i,b\\j,c\\k,d\\l)
(a,b,c,d) ^ n = (a^n,b^n,c^n,d^n)
instance (MultiplicativeGroup a, MultiplicativeGroup b, MultiplicativeGroup c, MultiplicativeGroup d, MultiplicativeGroup e) => MultiplicativeGroup (a,b,c,d,e) where
recip (a,b,c,d,e) = (recip a, recip b, recip c, recip d, recip e)
(a,b,c,d,e) / (i,j,k,l,m) = (a/i,b/j,c/k,d/l,e/m)
(a,b,c,d,e) \\ (i,j,k,l,m) = (a\\i,b\\j,c\\k,d\\l,e\\m)
(a,b,c,d,e) ^ n = (a^n,b^n,c^n,d^n,e^n)