algebra-3.1: Constructive abstract algebra

Numeric.Ring.Endomorphism

Synopsis

Documentation

newtype End a Source

The endomorphism ring of an abelian group or the endomorphism semiring of an abelian monoid

http:en.wikipedia.orgwikiEndomorphism_ring

Constructors

 End FieldsappEnd :: a -> a

Instances

 (Semiring r, Additive (End m), RightModule r m) => RightModule r (End m) (Semiring r, Additive (End m), LeftModule r m) => LeftModule r (End m) Monoid (End r) (Additive (End r), Abelian r) => Abelian (End r) Additive r => Additive (End r) (LeftModule Natural (End r), RightModule Natural (End r), Monoidal r) => Monoidal (End r) (Additive (End r), Abelian (End r), Multiplicative (End r), Abelian r, Monoidal r) => Semiring (End r) Multiplicative (End r) (LeftModule Integer (End r), RightModule Integer (End r), Monoidal (End r), Group r) => Group (End r) Multiplicative (End r) => Unital (End r) (Semiring (End r), Unital (End r), Monoidal (End r), Abelian r, Monoidal r) => Rig (End r) (Rig (End r), Rng (End r), Abelian r, Group r) => Ring (End r) (Multiplicative (End r), Abelian r, Commutative r) => Commutative (End r) (Semiring (End m), Additive (End m), Monoidal m, Abelian m) => RightModule (End m) (End m) (Semiring (End m), Additive (End m), Monoidal m, Abelian m) => LeftModule (End m) (End m)

fromEnd :: Unital r => End r -> rSource