algebra-4.2: Constructive abstract algebra

Numeric.Rig.Class

Synopsis

# Documentation

class (Semiring r, Unital r, Monoidal r) => Rig r where Source

A Ring without (n)egation

Minimal complete definition

Nothing

Methods

fromNatural :: Natural -> r Source

Instances

 Rig Bool Rig Int Rig Int8 Rig Int16 Rig Int32 Rig Int64 Rig Integer Rig Word Rig Word8 Rig Word16 Rig Word32 Rig Word64 Rig () Rig Natural Rig Euclidean (Commutative r, Ring r) => Rig (Complex r) (TriviallyInvolutive r, Ring r) => Rig (Quaternion r) (Commutative r, Ring r) => Rig (Dual r) (Commutative r, Rig r) => Rig (Hyper' r) (Commutative r, Rig r) => Rig (Hyper r) (Commutative r, Ring r) => Rig (Dual' r) Rig (BasisCoblade m) (TriviallyInvolutive r, Ring r) => Rig (Quaternion' r) (Commutative r, Ring r) => Rig (Trig r) (Abelian r, Monoidal r) => Rig (End r) Rig r => Rig (Opposite r) Rng r => Rig (RngRing r) Euclidean d => Rig (Fraction d) (Rig a, Rig b) => Rig (a, b) (Rig r, CounitalCoalgebra r m) => Rig (Covector r m) (Rig a, Rig b, Rig c) => Rig (a, b, c) (Rig r, CounitalCoalgebra r m) => Rig (Map r b m) (Rig a, Rig b, Rig c, Rig d) => Rig (a, b, c, d) (Rig a, Rig b, Rig c, Rig d, Rig e) => Rig (a, b, c, d, e)