{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-} ----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph -- Copyright : (c) Andrey Mokhov 2016-2018 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the core data type 'Graph' and associated algorithms. -- For graphs that are known to be /non-empty/ at compile time, see -- "Algebra.Graph.NonEmpty". 'Graph' is an instance of type classes defined in -- modules "Algebra.Graph.Class" and "Algebra.Graph.HigherKinded.Class", which -- can be used for polymorphic graph construction and manipulation. -- ----------------------------------------------------------------------------- module Algebra.Graph ( -- * Algebraic data type for graphs Graph (..), -- * Basic graph construction primitives empty, vertex, edge, overlay, connect, vertices, edges, overlays, connects, -- * Graph folding foldg, -- * Relations on graphs isSubgraphOf, (===), -- * Graph properties isEmpty, size, hasVertex, hasEdge, vertexCount, edgeCount, vertexList, edgeList, vertexSet, vertexIntSet, edgeSet, adjacencyList, adjacencyMap, adjacencyIntMap, -- * Standard families of graphs path, circuit, clique, biclique, star, stars, tree, forest, mesh, torus, deBruijn, -- * Graph transformation removeVertex, removeEdge, replaceVertex, mergeVertices, splitVertex, transpose, induce, simplify, sparsify, -- * Graph composition box, -- * Context Context (..), context ) where import Prelude () import Prelude.Compat import Control.Applicative (Alternative) import Control.DeepSeq (NFData (..)) import Control.Monad.Compat import Control.Monad.State (runState, get, put) import Data.Foldable (toList) import Data.Maybe (fromMaybe) import Data.Tree import Algebra.Graph.Internal import Data.IntMap (IntMap) import Data.IntSet (IntSet) import Data.Map (Map) import Data.Set (Set) import qualified Algebra.Graph.AdjacencyMap as AM import qualified Algebra.Graph.AdjacencyIntMap as AIM import qualified Control.Applicative as Ap import qualified Data.IntSet as IntSet import qualified Data.Set as Set import qualified Data.Tree as Tree {-| The 'Graph' data type is a deep embedding of the core graph construction primitives 'empty', 'vertex', 'overlay' and 'connect'. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == Vertex 0 > 1 + 2 == Overlay (Vertex 1) (Vertex 2) > 1 * 2 == Connect (Vertex 1) (Vertex 2) > 1 + 2 * 3 == Overlay (Vertex 1) (Connect (Vertex 2) (Vertex 3)) > 1 * (2 + 3) == Connect (Vertex 1) (Overlay (Vertex 2) (Vertex 3)) The 'Eq' instance is currently implemented using the 'AM.AdjacencyMap' as the /canonical graph representation/ and satisfies all axioms of algebraic graphs: * 'overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'connect' is associative and has 'empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'connect' distributes over 'overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'overlay' has 'empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ will denote the number of vertices in the graph, /m/ will denote the number of edges in the graph, and /s/ will denote the /size/ of the corresponding 'Graph' expression. For example, if @g@ is a 'Graph' then /n/, /m/ and /s/ can be computed as follows: @n == 'vertexCount' g m == 'edgeCount' g s == 'size' g@ Note that 'size' is slightly different from the 'length' method of the 'Foldable' type class, as the latter does not count 'empty' leaves of the expression: @'length' 'empty' == 0 'size' 'empty' == 1 'length' ('vertex' x) == 1 'size' ('vertex' x) == 1 'length' ('empty' + 'empty') == 0 'size' ('empty' + 'empty') == 2@ The 'size' of any graph is positive, and the difference @('size' g - 'length' g)@ corresponds to the number of occurrences of 'empty' in an expression @g@. Converting a 'Graph' to the corresponding 'AM.AdjacencyMap' takes /O(s + m * log(m))/ time and /O(s + m)/ memory. This is also the complexity of the graph equality test, because it is currently implemented by converting graph expressions to canonical representations based on adjacency maps. -} data Graph a = Empty | Vertex a | Overlay (Graph a) (Graph a) | Connect (Graph a) (Graph a) deriving (Foldable, Functor, Show, Traversable) instance NFData a => NFData (Graph a) where rnf Empty = () rnf (Vertex x ) = rnf x rnf (Overlay x y) = rnf x `seq` rnf y rnf (Connect x y) = rnf x `seq` rnf y instance Num a => Num (Graph a) where fromInteger = Vertex . fromInteger (+) = Overlay (*) = Connect signum = const Empty abs = id negate = id instance Ord a => Eq (Graph a) where (==) = equals -- TODO: Find a more efficient equality check. -- | Compare two graphs by converting them to their adjacency maps. {-# NOINLINE [1] equals #-} {-# RULES "equalsInt" equals = equalsInt #-} equals :: Ord a => Graph a -> Graph a -> Bool equals x y = adjacencyMap x == adjacencyMap y -- | Like @equals@ but specialised for graphs with vertices of type 'Int'. equalsInt :: Graph Int -> Graph Int -> Bool equalsInt x y = adjacencyIntMap x == adjacencyIntMap y instance Applicative Graph where pure = Vertex (<*>) = ap instance Monad Graph where return = pure g >>= f = foldg Empty f Overlay Connect g instance Alternative Graph where empty = Empty (<|>) = Overlay instance MonadPlus Graph where mzero = Empty mplus = Overlay -- | Construct the /empty graph/. An alias for the constructor 'Empty'. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' empty == True -- 'hasVertex' x empty == False -- 'vertexCount' empty == 0 -- 'edgeCount' empty == 0 -- 'size' empty == 1 -- @ empty :: Graph a empty = Empty {-# INLINE empty #-} -- | Construct the graph comprising /a single isolated vertex/. An alias for the -- constructor 'Vertex'. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' (vertex x) == False -- 'hasVertex' x (vertex x) == True -- 'vertexCount' (vertex x) == 1 -- 'edgeCount' (vertex x) == 0 -- 'size' (vertex x) == 1 -- @ vertex :: a -> Graph a vertex = Vertex {-# INLINE vertex #-} -- | Construct the graph comprising /a single edge/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- edge x y == 'connect' ('vertex' x) ('vertex' y) -- 'hasEdge' x y (edge x y) == True -- 'edgeCount' (edge x y) == 1 -- 'vertexCount' (edge 1 1) == 1 -- 'vertexCount' (edge 1 2) == 2 -- @ edge :: a -> a -> Graph a edge x y = connect (vertex x) (vertex y) -- | /Overlay/ two graphs. An alias for the constructor 'Overlay'. This is a -- commutative, associative and idempotent operation with the identity 'empty'. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. -- -- @ -- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (overlay x y) >= 'vertexCount' x -- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (overlay x y) >= 'edgeCount' x -- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y -- 'size' (overlay x y) == 'size' x + 'size' y -- 'vertexCount' (overlay 1 2) == 2 -- 'edgeCount' (overlay 1 2) == 0 -- @ overlay :: Graph a -> Graph a -> Graph a overlay = Overlay {-# INLINE overlay #-} -- | /Connect/ two graphs. An alias for the constructor 'Connect'. This is an -- associative operation with the identity 'empty', which distributes over -- 'overlay' and obeys the decomposition axiom. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. Note that the number -- of edges in the resulting graph is quadratic with respect to the number of -- vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (connect x y) >= 'vertexCount' x -- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (connect x y) >= 'edgeCount' x -- 'edgeCount' (connect x y) >= 'edgeCount' y -- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y -- 'size' (connect x y) == 'size' x + 'size' y -- 'vertexCount' (connect 1 2) == 2 -- 'edgeCount' (connect 1 2) == 1 -- @ connect :: Graph a -> Graph a -> Graph a connect = Connect {-# INLINE connect #-} -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'vertexSet' . vertices == Set.'Set.fromList' -- @ vertices :: [a] -> Graph a vertices = overlays . map vertex {-# NOINLINE [1] vertices #-} -- | Construct the graph from a list of edges. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- edges [] == 'empty' -- edges [(x,y)] == 'edge' x y -- 'edgeCount' . edges == 'length' . 'Data.List.nub' -- @ edges :: [(a, a)] -> Graph a edges = overlays . map (uncurry edge) -- | Overlay a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- overlays == 'foldr' 'overlay' 'empty' -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: [Graph a] -> Graph a overlays = concatg overlay {-# INLINE [2] overlays #-} -- | Connect a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- connects [] == 'empty' -- connects [x] == x -- connects [x,y] == 'connect' x y -- connects == 'foldr' 'connect' 'empty' -- 'isEmpty' . connects == 'all' 'isEmpty' -- @ connects :: [Graph a] -> Graph a connects = concatg connect {-# INLINE [2] connects #-} -- | Auxiliary function, similar to 'mconcat'. concatg :: (Graph a -> Graph a -> Graph a) -> [Graph a] -> Graph a concatg combine = fromMaybe empty . foldr1Safe combine -- | Generalised 'Graph' folding: recursively collapse a 'Graph' by applying -- the provided functions to the leaves and internal nodes of the expression. -- The order of arguments is: empty, vertex, overlay and connect. -- Complexity: /O(s)/ applications of given functions. As an example, the -- complexity of 'size' is /O(s)/, since all functions have cost /O(1)/. -- -- @ -- foldg 'empty' 'vertex' 'overlay' 'connect' == id -- foldg 'empty' 'vertex' 'overlay' (flip 'connect') == 'transpose' -- foldg [] return (++) (++) == 'Data.Foldable.toList' -- foldg 0 (const 1) (+) (+) == 'Data.Foldable.length' -- foldg 1 (const 1) (+) (+) == 'size' -- foldg True (const False) (&&) (&&) == 'isEmpty' -- @ foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> Graph a -> b foldg e v o c = go where go Empty = e go (Vertex x ) = v x go (Overlay x y) = o (go x) (go y) go (Connect x y) = c (go x) (go y) -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- isSubgraphOf 'empty' x == True -- isSubgraphOf ('vertex' x) 'empty' == False -- isSubgraphOf x ('overlay' x y) == True -- isSubgraphOf ('overlay' x y) ('connect' x y) == True -- isSubgraphOf ('path' xs) ('circuit' xs) == True -- @ {-# SPECIALISE isSubgraphOf :: Graph Int -> Graph Int -> Bool #-} isSubgraphOf :: Ord a => Graph a -> Graph a -> Bool isSubgraphOf x y = overlay x y == y -- | Structural equality on graph expressions. -- Complexity: /O(s)/ time. -- -- @ -- x === x == True -- x === x + 'empty' == False -- x + y === x + y == True -- 1 + 2 === 2 + 1 == False -- x + y === x * y == False -- @ {-# SPECIALISE (===) :: Graph Int -> Graph Int -> Bool #-} (===) :: Eq a => Graph a -> Graph a -> Bool Empty === Empty = True (Vertex x1 ) === (Vertex x2 ) = x1 == x2 (Overlay x1 y1) === (Overlay x2 y2) = x1 === x2 && y1 === y2 (Connect x1 y1) === (Connect x2 y2) = x1 === x2 && y1 === y2 _ === _ = False infix 4 === -- | Check if a graph is empty. A convenient alias for 'null'. -- Complexity: /O(s)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' x y) == False -- @ isEmpty :: Graph a -> Bool isEmpty = foldg True (const False) (&&) (&&) -- | The /size/ of a graph, i.e. the number of leaves of the expression -- including 'empty' leaves. -- Complexity: /O(s)/ time. -- -- @ -- size 'empty' == 1 -- size ('vertex' x) == 1 -- size ('overlay' x y) == size x + size y -- size ('connect' x y) == size x + size y -- size x >= 1 -- size x >= 'vertexCount' x -- @ size :: Graph a -> Int size = foldg 1 (const 1) (+) (+) -- | Check if a graph contains a given vertex. A convenient alias for `elem`. -- Complexity: /O(s)/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' x) == True -- hasVertex 1 ('vertex' 2) == False -- hasVertex x . 'removeVertex' x == const False -- @ {-# SPECIALISE hasVertex :: Int -> Graph Int -> Bool #-} hasVertex :: Eq a => a -> Graph a -> Bool hasVertex x = foldg False (==x) (||) (||) -- | Check if a graph contains a given edge. -- Complexity: /O(s)/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' x y) == True -- hasEdge x y . 'removeEdge' x y == const False -- hasEdge x y == 'elem' (x,y) . 'edgeList' -- @ {-# SPECIALISE hasEdge :: Int -> Int -> Graph Int -> Bool #-} hasEdge :: Eq a => a -> a -> Graph a -> Bool hasEdge s t g = hit g == Edge where hit Empty = Miss hit (Vertex x ) = if x == s then Tail else Miss hit (Overlay x y) = case hit x of Miss -> hit y Tail -> max Tail (hit y) Edge -> Edge hit (Connect x y) = case hit x of Miss -> hit y Tail -> if hasVertex t y then Edge else Tail Edge -> Edge -- | The number of vertices in a graph. -- Complexity: /O(s * log(n))/ time. -- -- @ -- vertexCount 'empty' == 0 -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- @ {-# INLINE [1] vertexCount #-} {-# RULES "vertexCount/Int" vertexCount = vertexIntCount #-} vertexCount :: Ord a => Graph a -> Int vertexCount = Set.size . vertexSet -- | Like 'vertexCount' but specialised for graphs with vertices of type 'Int'. vertexIntCount :: Graph Int -> Int vertexIntCount = IntSet.size . vertexIntSet -- | The number of edges in a graph. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeCount 'empty' == 0 -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' x y) == 1 -- edgeCount == 'length' . 'edgeList' -- @ {-# INLINE [1] edgeCount #-} {-# RULES "edgeCount/Int" edgeCount = edgeCountInt #-} edgeCount :: Ord a => Graph a -> Int edgeCount = AM.edgeCount . toAdjacencyMap -- | Like 'edgeCount' but specialised for graphs with vertices of type 'Int'. edgeCountInt :: Graph Int -> Int edgeCountInt = AIM.edgeCount . toAdjacencyIntMap -- | The sorted list of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ {-# INLINE [1] vertexList #-} {-# RULES "vertexList/Int" vertexList = vertexIntList #-} vertexList :: Ord a => Graph a -> [a] vertexList = Set.toAscList . vertexSet -- | Like 'vertexList' but specialised for graphs with vertices of type 'Int'. vertexIntList :: Graph Int -> [Int] vertexIntList = IntSet.toList . vertexIntSet -- | The sorted list of edges of a graph. -- Complexity: /O(s + m * log(m))/ time and /O(m)/ memory. Note that the number of -- edges /m/ of a graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' x y) == [(x,y)] -- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)] -- edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort' -- edgeList . 'transpose' == 'Data.List.sort' . map 'Data.Tuple.swap' . edgeList -- @ {-# INLINE [1] edgeList #-} {-# RULES "edgeList/Int" edgeList = edgeIntList #-} edgeList :: Ord a => Graph a -> [(a, a)] edgeList = AM.edgeList . toAdjacencyMap -- | Like 'edgeList' but specialised for graphs with vertices of type 'Int'. edgeIntList :: Graph Int -> [(Int, Int)] edgeIntList = AIM.edgeList . toAdjacencyIntMap -- | The set of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexSet 'empty' == Set.'Set.empty' -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices' == Set.'Set.fromList' -- vertexSet . 'clique' == Set.'Set.fromList' -- @ vertexSet :: Ord a => Graph a -> Set.Set a vertexSet = foldg Set.empty Set.singleton Set.union Set.union -- | The set of vertices of a given graph. Like 'vertexSet' but specialised for -- graphs with vertices of type 'Int'. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexIntSet 'empty' == IntSet.'IntSet.empty' -- vertexIntSet . 'vertex' == IntSet.'IntSet.singleton' -- vertexIntSet . 'vertices' == IntSet.'IntSet.fromList' -- vertexIntSet . 'clique' == IntSet.'IntSet.fromList' -- @ vertexIntSet :: Graph Int -> IntSet.IntSet vertexIntSet = foldg IntSet.empty IntSet.singleton IntSet.union IntSet.union -- | The set of edges of a given graph. -- Complexity: /O(s * log(m))/ time and /O(m)/ memory. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y) -- edgeSet . 'edges' == Set.'Set.fromList' -- @ edgeSet :: Ord a => Graph a -> Set.Set (a, a) edgeSet = AM.edgeSet . toAdjacencyMap {-# INLINE [1] edgeSet #-} {-# RULES "edgeSet/Int" edgeSet = edgeIntSet #-} -- | Like 'edgeSet' but specialised for graphs with vertices of type 'Int'. edgeIntSet :: Graph Int -> Set.Set (Int,Int) edgeIntSet = AIM.edgeSet . toAdjacencyIntMap -- | The sorted /adjacency list/ of a graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- adjacencyList 'empty' == [] -- adjacencyList ('vertex' x) == [(x, [])] -- adjacencyList ('edge' 1 2) == [(1, [2]), (2, [])] -- adjacencyList ('star' 2 [3,1]) == [(1, []), (2, [1,3]), (3, [])] -- 'stars' . adjacencyList == id -- @ {-# SPECIALISE adjacencyList :: Graph Int -> [(Int, [Int])] #-} adjacencyList :: Ord a => Graph a -> [(a, [a])] adjacencyList = AM.adjacencyList . toAdjacencyMap -- | The /adjacency map/ of a graph: each vertex is associated with a set of its -- direct successors. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. adjacencyMap :: Ord a => Graph a -> Map a (Set a) adjacencyMap = AM.adjacencyMap . toAdjacencyMap -- TODO: This is a very inefficient implementation. Find a way to construct an -- adjacency map directly, without building intermediate representations for all -- subgraphs. -- | Convert a graph to 'AM.AdjacencyMap'. toAdjacencyMap :: Ord a => Graph a -> AM.AdjacencyMap a toAdjacencyMap = foldg AM.empty AM.vertex AM.overlay AM.connect -- | Like 'adjacencyMap' but specialised for graphs with vertices of type 'Int'. adjacencyIntMap :: Graph Int -> IntMap IntSet adjacencyIntMap = AIM.adjacencyIntMap . toAdjacencyIntMap -- | Like @toAdjacencyMap@ but specialised for graphs with vertices of type 'Int'. toAdjacencyIntMap :: Graph Int -> AIM.AdjacencyIntMap toAdjacencyIntMap = foldg AIM.empty AIM.vertex AIM.overlay AIM.connect -- | The /path/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- path [] == 'empty' -- path [x] == 'vertex' x -- path [x,y] == 'edge' x y -- path . 'reverse' == 'transpose' . path -- @ path :: [a] -> Graph a path xs = case xs of [] -> empty [x] -> vertex x (_:ys) -> edges (zip xs ys) -- | The /circuit/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- circuit [] == 'empty' -- circuit [x] == 'edge' x x -- circuit [x,y] == 'edges' [(x,y), (y,x)] -- circuit . 'reverse' == 'transpose' . circuit -- @ circuit :: [a] -> Graph a circuit [] = empty circuit (x:xs) = path $ [x] ++ xs ++ [x] -- | The /clique/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- clique [] == 'empty' -- clique [x] == 'vertex' x -- clique [x,y] == 'edge' x y -- clique [x,y,z] == 'edges' [(x,y), (x,z), (y,z)] -- clique (xs ++ ys) == 'connect' (clique xs) (clique ys) -- clique . 'reverse' == 'transpose' . clique -- @ clique :: [a] -> Graph a clique = connects . map vertex {-# NOINLINE [1] clique #-} -- | The /biclique/ on two lists of vertices. -- Complexity: /O(L1 + L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- biclique [] [] == 'empty' -- biclique [x] [] == 'vertex' x -- biclique [] [y] == 'vertex' y -- biclique [x1,x2] [y1,y2] == 'edges' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)] -- biclique xs ys == 'connect' ('vertices' xs) ('vertices' ys) -- @ biclique :: [a] -> [a] -> Graph a biclique xs [] = vertices xs biclique [] ys = vertices ys biclique xs ys = connect (vertices xs) (vertices ys) -- | The /star/ formed by a centre vertex connected to a list of leaves. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- star x [] == 'vertex' x -- star x [y] == 'edge' x y -- star x [y,z] == 'edges' [(x,y), (x,z)] -- star x ys == 'connect' ('vertex' x) ('vertices' ys) -- @ star :: a -> [a] -> Graph a star x [] = vertex x star x ys = connect (vertex x) (vertices ys) {-# INLINE star #-} -- | The /stars/ formed by overlaying a list of 'star's. An inverse of -- 'adjacencyList'. -- Complexity: /O(L)/ time, memory and size, where /L/ is the total size of the -- input. -- -- @ -- stars [] == 'empty' -- stars [(x, [])] == 'vertex' x -- stars [(x, [y])] == 'edge' x y -- stars [(x, ys)] == 'star' x ys -- stars == 'overlays' . map (uncurry 'star') -- stars . 'adjacencyList' == id -- 'overlay' (stars xs) (stars ys) == stars (xs ++ ys) -- @ stars :: [(a, [a])] -> Graph a stars = overlays . map (uncurry star) {-# INLINE stars #-} -- | The /tree graph/ constructed from a given 'Tree.Tree' data structure. -- Complexity: /O(T)/ time, memory and size, where /T/ is the size of the -- given tree (i.e. the number of vertices in the tree). -- -- @ -- tree (Node x []) == 'vertex' x -- tree (Node x [Node y [Node z []]]) == 'path' [x,y,z] -- tree (Node x [Node y [], Node z []]) == 'star' x [y,z] -- tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges' [(1,2), (1,3), (3,4), (3,5)] -- @ tree :: Tree.Tree a -> Graph a tree (Node x []) = vertex x tree (Node x f ) = star x (map rootLabel f) `overlay` forest (filter (not . null . subForest) f) -- | The /forest graph/ constructed from a given 'Tree.Forest' data structure. -- Complexity: /O(F)/ time, memory and size, where /F/ is the size of the -- given forest (i.e. the number of vertices in the forest). -- -- @ -- forest [] == 'empty' -- forest [x] == 'tree' x -- forest [Node 1 [Node 2 [], Node 3 []], Node 4 [Node 5 []]] == 'edges' [(1,2), (1,3), (4,5)] -- forest == 'overlays' . map 'tree' -- @ forest :: Tree.Forest a -> Graph a forest = overlays . map tree -- | Construct a /mesh graph/ from two lists of vertices. -- Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- mesh xs [] == 'empty' -- mesh [] ys == 'empty' -- mesh [x] [y] == 'vertex' (x, y) -- mesh xs ys == 'box' ('path' xs) ('path' ys) -- mesh [1..3] "ab" == 'edges' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')), ((1,\'b\'),(2,\'b\')), ((2,\'a\'),(2,\'b\')) -- , ((2,\'a\'),(3,\'a\')), ((2,\'b\'),(3,\'b\')), ((3,\'a\'),(3,\'b\')) ] -- @ mesh :: [a] -> [b] -> Graph (a, b) mesh [] _ = empty mesh _ [] = empty mesh [x] [y] = vertex (x, y) mesh xs ys = stars $ [ ((a1, b1), [(a1, b2), (a2, b1)]) | (a1, a2) <- ipxs, (b1, b2) <- ipys ] ++ [ ((lx,y1), [(lx,y2)]) | (y1,y2) <- ipys] ++ [ ((x1,ly), [(x2,ly)]) | (x1,x2) <- ipxs] where lx = last xs ly = last ys ipxs = init (pairs xs) ipys = init (pairs ys) -- | Construct a /torus graph/ from two lists of vertices. -- Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- torus xs [] == 'empty' -- torus [] ys == 'empty' -- torus [x] [y] == 'edge' (x,y) (x,y) -- torus xs ys == 'box' ('circuit' xs) ('circuit' ys) -- torus [1,2] "ab" == 'edges' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')), ((1,\'b\'),(1,\'a\')), ((1,\'b\'),(2,\'b\')) -- , ((2,\'a\'),(1,\'a\')), ((2,\'a\'),(2,\'b\')), ((2,\'b\'),(1,\'b\')), ((2,\'b\'),(2,\'a\')) ] -- @ torus :: [a] -> [b] -> Graph (a, b) torus xs ys = stars [ ((a1, b1), [(a1, b2), (a2, b1)]) | (a1, a2) <- pairs xs, (b1, b2) <- pairs ys ] -- | Auxiliary function for 'mesh' and 'torus' pairs :: [a] -> [(a, a)] pairs [] = [] pairs as@(x:xs) = zip as (xs ++ [x]) -- | Construct a /De Bruijn graph/ of a given non-negative dimension using symbols -- from a given alphabet. -- Complexity: /O(A^(D + 1))/ time, memory and size, where /A/ is the size of the -- alphabet and /D/ is the dimension of the graph. -- -- @ -- deBruijn 0 xs == 'edge' [] [] -- n > 0 ==> deBruijn n [] == 'empty' -- deBruijn 1 [0,1] == 'edges' [ ([0],[0]), ([0],[1]), ([1],[0]), ([1],[1]) ] -- deBruijn 2 "0" == 'edge' "00" "00" -- deBruijn 2 "01" == 'edges' [ ("00","00"), ("00","01"), ("01","10"), ("01","11") -- , ("10","00"), ("10","01"), ("11","10"), ("11","11") ] -- 'transpose' (deBruijn n xs) == 'fmap' 'reverse' $ deBruijn n xs -- 'vertexCount' (deBruijn n xs) == ('length' $ 'Data.List.nub' xs)^n -- n > 0 ==> 'edgeCount' (deBruijn n xs) == ('length' $ 'Data.List.nub' xs)^(n + 1) -- @ deBruijn :: Int -> [a] -> Graph [a] deBruijn 0 _ = edge [] [] deBruijn len alphabet = skeleton >>= expand where overlaps = mapM (const alphabet) [2..len] skeleton = edges [ (Left s, Right s) | s <- overlaps ] expand v = vertices [ either ([a] ++) (++ [a]) v | a <- alphabet ] -- | Remove a vertex from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex 1 ('vertex' 2) == 'vertex' 2 -- removeVertex x ('edge' x x) == 'empty' -- removeVertex 1 ('edge' 1 2) == 'vertex' 2 -- removeVertex x . removeVertex x == removeVertex x -- @ {-# SPECIALISE removeVertex :: Int -> Graph Int -> Graph Int #-} removeVertex :: Eq a => a -> Graph a -> Graph a removeVertex v = induce (/= v) -- | Remove an edge from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeEdge x y ('edge' x y) == 'vertices' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- 'size' (removeEdge x y z) <= 3 * 'size' z -- @ {-# SPECIALISE removeEdge :: Int -> Int -> Graph Int -> Graph Int #-} removeEdge :: Eq a => a -> a -> Graph a -> Graph a removeEdge s t = filterContext s (/=s) (/=t) -- TODO: Export -- | Filter vertices in a subgraph context. {-# SPECIALISE filterContext :: Int -> (Int -> Bool) -> (Int -> Bool) -> Graph Int -> Graph Int #-} filterContext :: Eq a => a -> (a -> Bool) -> (a -> Bool) -> Graph a -> Graph a filterContext s i o g = maybe g go $ context (==s) g where go (Context is os) = induce (/=s) g `overlay` transpose (star s (filter i is)) `overlay` star s (filter o os) -- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a -- given 'Graph'. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'mergeVertices' (== x) y -- @ {-# SPECIALISE replaceVertex :: Int -> Int -> Graph Int -> Graph Int #-} replaceVertex :: Eq a => a -> a -> Graph a -> Graph a replaceVertex u v = fmap $ \w -> if w == u then v else w -- | Merge vertices satisfying a given predicate into a given vertex. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- mergeVertices (const False) x == id -- mergeVertices (== x) y == 'replaceVertex' x y -- mergeVertices even 1 (0 * 2) == 1 * 1 -- mergeVertices odd 1 (3 + 4 * 5) == 4 * 1 -- @ mergeVertices :: (a -> Bool) -> a -> Graph a -> Graph a mergeVertices p v = fmap $ \w -> if p w then v else w -- | Split a vertex into a list of vertices with the same connectivity. -- Complexity: /O(s + k * L)/ time, memory and size, where /k/ is the number of -- occurrences of the vertex in the expression and /L/ is the length of the -- given list. -- -- @ -- splitVertex x [] == 'removeVertex' x -- splitVertex x [x] == id -- splitVertex x [y] == 'replaceVertex' x y -- splitVertex 1 [0,1] $ 1 * (2 + 3) == (0 + 1) * (2 + 3) -- @ {-# SPECIALISE splitVertex :: Int -> [Int] -> Graph Int -> Graph Int #-} splitVertex :: Eq a => a -> [a] -> Graph a -> Graph a splitVertex v us g = g >>= \w -> if w == v then vertices us else vertex w -- | Transpose a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' x y) == 'edge' y x -- transpose . transpose == id -- transpose ('box' x y) == 'box' (transpose x) (transpose y) -- 'edgeList' . transpose == 'Data.List.sort' . map 'Data.Tuple.swap' . 'edgeList' -- @ transpose :: Graph a -> Graph a transpose = foldg Empty Vertex Overlay (flip Connect) {-# NOINLINE [1] transpose #-} {-# RULES "transpose/Empty" transpose Empty = Empty "transpose/Vertex" forall x. transpose (Vertex x) = Vertex x "transpose/Overlay" forall g1 g2. transpose (Overlay g1 g2) = Overlay (transpose g1) (transpose g2) "transpose/Connect" forall g1 g2. transpose (Connect g1 g2) = Connect (transpose g2) (transpose g1) "transpose/overlays" forall xs. transpose (overlays xs) = overlays (map transpose xs) "transpose/connects" forall xs. transpose (connects xs) = connects (reverse (map transpose xs)) "transpose/vertices" forall xs. transpose (vertices xs) = vertices xs "transpose/clique" forall xs. transpose (clique xs) = clique (reverse xs) #-} -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- induce (const True ) x == x -- induce (const False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: (a -> Bool) -> Graph a -> Graph a induce p = foldg Empty (\x -> if p x then Vertex x else Empty) (k Overlay) (k Connect) where k _ x Empty = x -- Constant folding to get rid of Empty leaves k _ Empty y = y k f x y = f x y -- | Simplify a graph expression. Semantically, this is the identity function, -- but it simplifies a given expression according to the laws of the algebra. -- The function does not compute the simplest possible expression, -- but uses heuristics to obtain useful simplifications in reasonable time. -- Complexity: the function performs /O(s)/ graph comparisons. It is guaranteed -- that the size of the result does not exceed the size of the given expression. -- -- @ -- simplify == id -- 'size' (simplify x) <= 'size' x -- simplify 'empty' '===' 'empty' -- simplify 1 '===' 1 -- simplify (1 + 1) '===' 1 -- simplify (1 + 2 + 1) '===' 1 + 2 -- simplify (1 * 1 * 1) '===' 1 * 1 -- @ {-# SPECIALISE simplify :: Graph Int -> Graph Int #-} simplify :: Ord a => Graph a -> Graph a simplify = foldg Empty Vertex (simple Overlay) (simple Connect) {-# SPECIALISE simple :: (Int -> Int -> Int) -> Int -> Int -> Int #-} simple :: Eq g => (g -> g -> g) -> g -> g -> g simple op x y | x == z = x | y == z = y | otherwise = z where z = op x y -- | Compute the /Cartesian product/ of graphs. -- Complexity: /O(s1 * s2)/ time, memory and size, where /s1/ and /s2/ are the -- sizes of the given graphs. -- -- @ -- box ('path' [0,1]) ('path' "ab") == 'edges' [ ((0,\'a\'), (0,\'b\')) -- , ((0,\'a\'), (1,\'a\')) -- , ((0,\'b\'), (1,\'b\')) -- , ((1,\'a\'), (1,\'b\')) ] -- @ -- Up to an isomorphism between the resulting vertex types, this operation -- is /commutative/, /associative/, /distributes/ over 'overlay', has singleton -- graphs as /identities/ and 'empty' as the /annihilating zero/. Below @~~@ -- stands for the equality up to an isomorphism, e.g. @(x, ()) ~~ x@. -- -- @ -- box x y ~~ box y x -- box x (box y z) ~~ box (box x y) z -- box x ('overlay' y z) == 'overlay' (box x y) (box x z) -- box x ('vertex' ()) ~~ x -- box x 'empty' ~~ 'empty' -- 'transpose' (box x y) == box ('transpose' x) ('transpose' y) -- 'vertexCount' (box x y) == 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (box x y) <= 'vertexCount' x * 'edgeCount' y + 'edgeCount' x * 'vertexCount' y -- @ box :: Graph a -> Graph b -> Graph (a, b) box x y = overlays $ xs ++ ys where xs = map (\b -> fmap (,b) x) $ toList y ys = map (\a -> fmap (a,) y) $ toList x -- | 'Focus' on a specified subgraph. focus :: (a -> Bool) -> Graph a -> Focus a focus f = foldg emptyFocus (vertexFocus f) overlayFoci connectFoci -- | The context of a subgraph comprises the input and output vertices outside -- the subgraph that are connected to the vertices inside the subgraph. data Context a = Context { inputs :: [a], outputs :: [a] } -- | Extract the context from a graph 'Focus'. Returns @Nothing@ if the focus -- could not be obtained. context :: (a -> Bool) -> Graph a -> Maybe (Context a) context p g | ok f = Just $ Context (toList $ is f) (toList $ os f) | otherwise = Nothing where f = focus p g -- | /Sparsify/ a graph by adding intermediate 'Left' @Int@ vertices between the -- original vertices (wrapping the latter in 'Right') such that the resulting -- graph is /sparse/, i.e. contains only O(s) edges, but preserves the -- reachability relation between the original vertices. Sparsification is useful -- when working with dense graphs, as it can reduce the number of edges from -- O(n^2) down to O(n) by replacing cliques, bicliques and similar densely -- connected structures by sparse subgraphs built out of intermediate vertices. -- Complexity: O(s) time, memory and size. -- -- @ -- 'Data.List.sort' . 'Algebra.Graph.ToGraph.reachable' x == 'Data.List.sort' . 'Data.Either.rights' . 'Algebra.Graph.ToGraph.reachable' ('Data.Either.Right' x) . sparsify -- 'vertexCount' (sparsify x) <= 'vertexCount' x + 'size' x + 1 -- 'edgeCount' (sparsify x) <= 3 * 'size' x -- 'size' (sparsify x) <= 3 * 'size' x -- @ sparsify :: Graph a -> Graph (Either Int a) sparsify graph = res where (res, end) = runState (foldg e v o c graph 0 end) 1 e s t = return $ path [Left s, Left t] v x s t = return $ clique [Left s, Right x, Left t] o x y s t = overlay <$> s `x` t <*> s `y` t c x y s t = do m <- get put (m + 1) overlay <$> s `x` m <*> m `y` t