----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.AdjacencyIntMap -- Copyright : (c) Andrey Mokhov 2016-2018 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the 'AdjacencyIntMap' data type, as well as associated -- operations and algorithms. 'AdjacencyIntMap' is an instance of the 'C.Graph' -- type class, which can be used for polymorphic graph construction -- and manipulation. See "Algebra.Graph.AdjacencyMap" for graphs with -- non-@Int@ vertices. ----------------------------------------------------------------------------- module Algebra.Graph.AdjacencyIntMap ( -- * Data structure AdjacencyIntMap, adjacencyIntMap, -- * Basic graph construction primitives empty, vertex, edge, overlay, connect, vertices, edges, overlays, connects, -- * Relations on graphs isSubgraphOf, -- * Graph properties isEmpty, hasVertex, hasEdge, vertexCount, edgeCount, vertexList, edgeList, adjacencyList, vertexIntSet, edgeSet, preIntSet, postIntSet, -- * Standard families of graphs path, circuit, clique, biclique, star, stars, tree, forest, -- * Graph transformation removeVertex, removeEdge, replaceVertex, mergeVertices, transpose, gmap, induce, -- * Algorithms dfsForest, dfsForestFrom, dfs, reachable, topSort, isAcyclic, -- * Correctness properties isDfsForestOf, isTopSortOf ) where import Control.Monad import Data.Foldable (foldMap) import Data.IntSet (IntSet) import Data.Maybe import Data.Monoid import Data.Set (Set) import Data.Tree import Algebra.Graph.AdjacencyIntMap.Internal import qualified Data.Graph.Typed as Typed import qualified Data.IntMap.Strict as IntMap import qualified Data.IntSet as IntSet import qualified Data.Set as Set -- | Construct the graph comprising /a single edge/. -- Complexity: /O(1)/ time, memory. -- -- @ -- edge x y == 'connect' ('vertex' x) ('vertex' y) -- 'hasEdge' x y (edge x y) == True -- 'edgeCount' (edge x y) == 1 -- 'vertexCount' (edge 1 1) == 1 -- 'vertexCount' (edge 1 2) == 2 -- @ edge :: Int -> Int -> AdjacencyIntMap edge x y | x == y = AM $ IntMap.singleton x (IntSet.singleton y) | otherwise = AM $ IntMap.fromList [(x, IntSet.singleton y), (y, IntSet.empty)] -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L * log(L))/ time and /O(L)/ memory, where /L/ is the length -- of the given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'vertexIntSet' . vertices == IntSet.'IntSet.fromList' -- @ vertices :: [Int] -> AdjacencyIntMap vertices = AM . IntMap.fromList . map (\x -> (x, IntSet.empty)) {-# NOINLINE [1] vertices #-} -- | Construct the graph from a list of edges. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- edges [] == 'empty' -- edges [(x,y)] == 'edge' x y -- 'edgeCount' . edges == 'length' . 'Data.List.nub' -- 'edgeList' . edges == 'Data.List.nub' . 'Data.List.sort' -- @ edges :: [(Int, Int)] -> AdjacencyIntMap edges = fromAdjacencyIntSets . map (fmap IntSet.singleton) -- | Overlay a given list of graphs. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- overlays == 'foldr' 'overlay' 'empty' -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: [AdjacencyIntMap] -> AdjacencyIntMap overlays = AM . IntMap.unionsWith IntSet.union . map adjacencyIntMap {-# NOINLINE [1] overlays #-} -- | Connect a given list of graphs. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- connects [] == 'empty' -- connects [x] == x -- connects [x,y] == 'connect' x y -- connects == 'foldr' 'connect' 'empty' -- 'isEmpty' . connects == 'all' 'isEmpty' -- @ connects :: [AdjacencyIntMap] -> AdjacencyIntMap connects = foldr connect empty {-# NOINLINE [1] connects #-} -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- isSubgraphOf 'empty' x == True -- isSubgraphOf ('vertex' x) 'empty' == False -- isSubgraphOf x ('overlay' x y) == True -- isSubgraphOf ('overlay' x y) ('connect' x y) == True -- isSubgraphOf ('path' xs) ('circuit' xs) == True -- @ isSubgraphOf :: AdjacencyIntMap -> AdjacencyIntMap -> Bool isSubgraphOf x y = IntMap.isSubmapOfBy IntSet.isSubsetOf (adjacencyIntMap x) (adjacencyIntMap y) -- | Check if a graph is empty. -- Complexity: /O(1)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' x y) == False -- @ isEmpty :: AdjacencyIntMap -> Bool isEmpty = IntMap.null . adjacencyIntMap -- | Check if a graph contains a given vertex. -- Complexity: /O(log(n))/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' x) == True -- hasVertex 1 ('vertex' 2) == False -- hasVertex x . 'removeVertex' x == const False -- @ hasVertex :: Int -> AdjacencyIntMap -> Bool hasVertex x = IntMap.member x . adjacencyIntMap -- | Check if a graph contains a given edge. -- Complexity: /O(log(n))/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' x y) == True -- hasEdge x y . 'removeEdge' x y == const False -- hasEdge x y == 'elem' (x,y) . 'edgeList' -- @ hasEdge :: Int -> Int -> AdjacencyIntMap -> Bool hasEdge u v a = case IntMap.lookup u (adjacencyIntMap a) of Nothing -> False Just vs -> IntSet.member v vs -- | The number of vertices in a graph. -- Complexity: /O(1)/ time. -- -- @ -- vertexCount 'empty' == 0 -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- @ vertexCount :: AdjacencyIntMap -> Int vertexCount = IntMap.size . adjacencyIntMap -- | The number of edges in a graph. -- Complexity: /O(n)/ time. -- -- @ -- edgeCount 'empty' == 0 -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' x y) == 1 -- edgeCount == 'length' . 'edgeList' -- @ edgeCount :: AdjacencyIntMap -> Int edgeCount = getSum . foldMap (Sum . IntSet.size) . adjacencyIntMap -- | The sorted list of vertices of a given graph. -- Complexity: /O(n)/ time and memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ vertexList :: AdjacencyIntMap -> [Int] vertexList = IntMap.keys . adjacencyIntMap -- | The sorted list of edges of a graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' x y) == [(x,y)] -- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)] -- edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort' -- edgeList . 'transpose' == 'Data.List.sort' . map 'Data.Tuple.swap' . edgeList -- @ edgeList :: AdjacencyIntMap -> [(Int, Int)] edgeList (AM m) = [ (x, y) | (x, ys) <- IntMap.toAscList m, y <- IntSet.toAscList ys ] -- | The set of vertices of a given graph. -- Complexity: /O(n)/ time and memory. -- -- @ -- vertexIntSet 'empty' == IntSet.'IntSet.empty' -- vertexIntSet . 'vertex' == IntSet.'IntSet.singleton' -- vertexIntSet . 'vertices' == IntSet.'IntSet.fromList' -- vertexIntSet . 'clique' == IntSet.'IntSet.fromList' -- @ vertexIntSet :: AdjacencyIntMap -> IntSet vertexIntSet = IntMap.keysSet . adjacencyIntMap -- | The set of edges of a given graph. -- Complexity: /O((n + m) * log(m))/ time and /O(m)/ memory. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y) -- edgeSet . 'edges' == Set.'Set.fromList' -- @ edgeSet :: AdjacencyIntMap -> Set (Int, Int) edgeSet = Set.fromAscList . edgeList -- | The sorted /adjacency list/ of a graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- adjacencyList 'empty' == [] -- adjacencyList ('vertex' x) == [(x, [])] -- adjacencyList ('edge' 1 2) == [(1, [2]), (2, [])] -- adjacencyList ('star' 2 [3,1]) == [(1, []), (2, [1,3]), (3, [])] -- 'stars' . adjacencyList == id -- @ adjacencyList :: AdjacencyIntMap -> [(Int, [Int])] adjacencyList = map (fmap IntSet.toAscList) . IntMap.toAscList . adjacencyIntMap -- | The /preset/ (here @preIntSet@) of an element @x@ is the set of its -- /direct predecessors/. -- Complexity: /O(n * log(n))/ time and /O(n)/ memory. -- -- @ -- preIntSet x 'empty' == Set.'Set.empty' -- preIntSet x ('vertex' x) == Set.'Set.empty' -- preIntSet 1 ('edge' 1 2) == Set.'Set.empty' -- preIntSet y ('edge' x y) == Set.'Set.fromList' [x] -- @ preIntSet :: Int -> AdjacencyIntMap -> IntSet.IntSet preIntSet x = IntSet.fromAscList . map fst . filter p . IntMap.toAscList . adjacencyIntMap where p (_, set) = x `IntSet.member` set -- | The /postset/ (here @postIntSet@) of a vertex is the set of its -- /direct successors/. -- -- @ -- postIntSet x 'empty' == IntSet.'IntSet.empty' -- postIntSet x ('vertex' x) == IntSet.'IntSet.empty' -- postIntSet x ('edge' x y) == IntSet.'IntSet.fromList' [y] -- postIntSet 2 ('edge' 1 2) == IntSet.'IntSet.empty' -- @ postIntSet :: Int -> AdjacencyIntMap -> IntSet postIntSet x = IntMap.findWithDefault IntSet.empty x . adjacencyIntMap -- | The /path/ on a list of vertices. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- path [] == 'empty' -- path [x] == 'vertex' x -- path [x,y] == 'edge' x y -- path . 'reverse' == 'transpose' . path -- @ path :: [Int] -> AdjacencyIntMap path xs = case xs of [] -> empty [x] -> vertex x (_:ys) -> edges (zip xs ys) -- | The /circuit/ on a list of vertices. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- circuit [] == 'empty' -- circuit [x] == 'edge' x x -- circuit [x,y] == 'edges' [(x,y), (y,x)] -- circuit . 'reverse' == 'transpose' . circuit -- @ circuit :: [Int] -> AdjacencyIntMap circuit [] = empty circuit (x:xs) = path $ [x] ++ xs ++ [x] -- | The /clique/ on a list of vertices. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- clique [] == 'empty' -- clique [x] == 'vertex' x -- clique [x,y] == 'edge' x y -- clique [x,y,z] == 'edges' [(x,y), (x,z), (y,z)] -- clique (xs ++ ys) == 'connect' (clique xs) (clique ys) -- clique . 'reverse' == 'transpose' . clique -- @ clique :: [Int] -> AdjacencyIntMap clique = fromAdjacencyIntSets . fst . go where go [] = ([], IntSet.empty) go (x:xs) = let (res, set) = go xs in ((x, set) : res, IntSet.insert x set) {-# NOINLINE [1] clique #-} -- | The /biclique/ on two lists of vertices. -- Complexity: /O(n * log(n) + m)/ time and /O(n + m)/ memory. -- -- @ -- biclique [] [] == 'empty' -- biclique [x] [] == 'vertex' x -- biclique [] [y] == 'vertex' y -- biclique [x1,x2] [y1,y2] == 'edges' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)] -- biclique xs ys == 'connect' ('vertices' xs) ('vertices' ys) -- @ biclique :: [Int] -> [Int] -> AdjacencyIntMap biclique xs ys = AM $ IntMap.fromSet adjacent (x `IntSet.union` y) where x = IntSet.fromList xs y = IntSet.fromList ys adjacent v = if v `IntSet.member` x then y else IntSet.empty -- TODO: Optimise. -- | The /star/ formed by a centre vertex connected to a list of leaves. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- star x [] == 'vertex' x -- star x [y] == 'edge' x y -- star x [y,z] == 'edges' [(x,y), (x,z)] -- star x ys == 'connect' ('vertex' x) ('vertices' ys) -- @ star :: Int -> [Int] -> AdjacencyIntMap star x [] = vertex x star x ys = connect (vertex x) (vertices ys) {-# INLINE star #-} -- | The /stars/ formed by overlaying a list of 'star's. An inverse of -- 'adjacencyList'. -- Complexity: /O(L * log(n))/ time, memory and size, where /L/ is the total -- size of the input. -- -- @ -- stars [] == 'empty' -- stars [(x, [])] == 'vertex' x -- stars [(x, [y])] == 'edge' x y -- stars [(x, ys)] == 'star' x ys -- stars == 'overlays' . map (uncurry 'star') -- stars . 'adjacencyList' == id -- 'overlay' (stars xs) (stars ys) == stars (xs ++ ys) -- @ stars :: [(Int, [Int])] -> AdjacencyIntMap stars = fromAdjacencyIntSets . map (fmap IntSet.fromList) -- | The /tree graph/ constructed from a given 'Tree' data structure. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- tree (Node x []) == 'vertex' x -- tree (Node x [Node y [Node z []]]) == 'path' [x,y,z] -- tree (Node x [Node y [], Node z []]) == 'star' x [y,z] -- tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges' [(1,2), (1,3), (3,4), (3,5)] -- @ tree :: Tree Int -> AdjacencyIntMap tree (Node x []) = vertex x tree (Node x f ) = star x (map rootLabel f) `overlay` forest (filter (not . null . subForest) f) -- | The /forest graph/ constructed from a given 'Forest' data structure. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- forest [] == 'empty' -- forest [x] == 'tree' x -- forest [Node 1 [Node 2 [], Node 3 []], Node 4 [Node 5 []]] == 'edges' [(1,2), (1,3), (4,5)] -- forest == 'overlays' . map 'tree' -- @ forest :: Forest Int -> AdjacencyIntMap forest = overlays . map tree -- | Remove a vertex from a given graph. -- Complexity: /O(n*log(n))/ time. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex 1 ('vertex' 2) == 'vertex' 2 -- removeVertex x ('edge' x x) == 'empty' -- removeVertex 1 ('edge' 1 2) == 'vertex' 2 -- removeVertex x . removeVertex x == removeVertex x -- @ removeVertex :: Int -> AdjacencyIntMap -> AdjacencyIntMap removeVertex x = AM . IntMap.map (IntSet.delete x) . IntMap.delete x . adjacencyIntMap -- | Remove an edge from a given graph. -- Complexity: /O(log(n))/ time. -- -- @ -- removeEdge x y ('edge' x y) == 'vertices' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- @ removeEdge :: Int -> Int -> AdjacencyIntMap -> AdjacencyIntMap removeEdge x y = AM . IntMap.adjust (IntSet.delete y) x . adjacencyIntMap -- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a -- given 'AdjacencyIntMap'. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'mergeVertices' (== x) y -- @ replaceVertex :: Int -> Int -> AdjacencyIntMap -> AdjacencyIntMap replaceVertex u v = gmap $ \w -> if w == u then v else w -- | Merge vertices satisfying a given predicate into a given vertex. -- Complexity: /O((n + m) * log(n))/ time, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- mergeVertices (const False) x == id -- mergeVertices (== x) y == 'replaceVertex' x y -- mergeVertices even 1 (0 * 2) == 1 * 1 -- mergeVertices odd 1 (3 + 4 * 5) == 4 * 1 -- @ mergeVertices :: (Int -> Bool) -> Int -> AdjacencyIntMap -> AdjacencyIntMap mergeVertices p v = gmap $ \u -> if p u then v else u -- | Transpose a given graph. -- Complexity: /O(m * log(n))/ time, /O(n + m)/ memory. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' x y) == 'edge' y x -- transpose . transpose == id -- 'edgeList' . transpose == 'Data.List.sort' . map 'Data.Tuple.swap' . 'edgeList' -- @ transpose :: AdjacencyIntMap -> AdjacencyIntMap transpose (AM m) = AM $ IntMap.foldrWithKey combine vs m where combine v es = IntMap.unionWith IntSet.union (IntMap.fromSet (const $ IntSet.singleton v) es) vs = IntMap.fromSet (const IntSet.empty) (IntMap.keysSet m) {-# NOINLINE [1] transpose #-} {-# RULES "transpose/empty" transpose empty = empty "transpose/vertex" forall x. transpose (vertex x) = vertex x "transpose/overlay" forall g1 g2. transpose (overlay g1 g2) = overlay (transpose g1) (transpose g2) "transpose/connect" forall g1 g2. transpose (connect g1 g2) = connect (transpose g2) (transpose g1) "transpose/overlays" forall xs. transpose (overlays xs) = overlays (map transpose xs) "transpose/connects" forall xs. transpose (connects xs) = connects (reverse (map transpose xs)) "transpose/vertices" forall xs. transpose (vertices xs) = vertices xs "transpose/clique" forall xs. transpose (clique xs) = clique (reverse xs) #-} -- | Transform a graph by applying a function to each of its vertices. This is -- similar to @Functor@'s 'fmap' but can be used with non-fully-parametric -- 'AdjacencyIntMap'. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- gmap f 'empty' == 'empty' -- gmap f ('vertex' x) == 'vertex' (f x) -- gmap f ('edge' x y) == 'edge' (f x) (f y) -- gmap id == id -- gmap f . gmap g == gmap (f . g) -- @ gmap :: (Int -> Int) -> AdjacencyIntMap -> AdjacencyIntMap gmap f = AM . IntMap.map (IntSet.map f) . IntMap.mapKeysWith IntSet.union f . adjacencyIntMap -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(m)/ time, assuming that the predicate takes /O(1)/ to -- be evaluated. -- -- @ -- induce (const True ) x == x -- induce (const False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: (Int -> Bool) -> AdjacencyIntMap -> AdjacencyIntMap induce p = AM . IntMap.map (IntSet.filter p) . IntMap.filterWithKey (\k _ -> p k) . adjacencyIntMap -- | Compute the /depth-first search/ forest of a graph that corresponds to -- searching from each of the graph vertices in the 'Ord' @a@ order. -- -- @ -- dfsForest 'empty' == [] -- 'forest' (dfsForest $ 'edge' 1 1) == 'vertex' 1 -- 'forest' (dfsForest $ 'edge' 1 2) == 'edge' 1 2 -- 'forest' (dfsForest $ 'edge' 2 1) == 'vertices' [1,2] -- 'isSubgraphOf' ('forest' $ dfsForest x) x == True -- 'isDfsForestOf' (dfsForest x) x == True -- dfsForest . 'forest' . dfsForest == dfsForest -- dfsForest ('vertices' vs) == map (\\v -> Node v []) ('Data.List.nub' $ 'Data.List.sort' vs) -- 'dfsForestFrom' ('vertexList' x) x == dfsForest x -- dfsForest $ 3 * (1 + 4) * (1 + 5) == [ Node { rootLabel = 1 -- , subForest = [ Node { rootLabel = 5 -- , subForest = [] }]} -- , Node { rootLabel = 3 -- , subForest = [ Node { rootLabel = 4 -- , subForest = [] }]}] -- @ dfsForest :: AdjacencyIntMap -> Forest Int dfsForest = Typed.dfsForest . Typed.fromAdjacencyIntMap -- | Compute the /depth-first search/ forest of a graph, searching from each of -- the given vertices in order. Note that the resulting forest does not -- necessarily span the whole graph, as some vertices may be unreachable. -- -- @ -- dfsForestFrom vs 'empty' == [] -- 'forest' (dfsForestFrom [1] $ 'edge' 1 1) == 'vertex' 1 -- 'forest' (dfsForestFrom [1] $ 'edge' 1 2) == 'edge' 1 2 -- 'forest' (dfsForestFrom [2] $ 'edge' 1 2) == 'vertex' 2 -- 'forest' (dfsForestFrom [3] $ 'edge' 1 2) == 'empty' -- 'forest' (dfsForestFrom [2,1] $ 'edge' 1 2) == 'vertices' [1,2] -- 'isSubgraphOf' ('forest' $ dfsForestFrom vs x) x == True -- 'isDfsForestOf' (dfsForestFrom ('vertexList' x) x) x == True -- dfsForestFrom ('vertexList' x) x == 'dfsForest' x -- dfsForestFrom vs ('vertices' vs) == map (\\v -> Node v []) ('Data.List.nub' vs) -- dfsForestFrom [] x == [] -- dfsForestFrom [1,4] $ 3 * (1 + 4) * (1 + 5) == [ Node { rootLabel = 1 -- , subForest = [ Node { rootLabel = 5 -- , subForest = [] } -- , Node { rootLabel = 4 -- , subForest = [] }] -- @ dfsForestFrom :: [Int] -> AdjacencyIntMap -> Forest Int dfsForestFrom vs = Typed.dfsForestFrom vs . Typed.fromAdjacencyIntMap -- | Compute the list of vertices visited by the /depth-first search/ in a graph, -- when searching from each of the given vertices in order. -- -- @ -- dfs vs $ 'empty' == [] -- dfs [1] $ 'edge' 1 1 == [1] -- dfs [1] $ 'edge' 1 2 == [1,2] -- dfs [2] $ 'edge' 1 2 == [2] -- dfs [3] $ 'edge' 1 2 == [] -- dfs [1,2] $ 'edge' 1 2 == [1,2] -- dfs [2,1] $ 'edge' 1 2 == [2,1] -- dfs [] $ x == [] -- dfs [1,4] $ 3 * (1 + 4) * (1 + 5) == [1,5,4] -- 'isSubgraphOf' ('vertices' $ dfs vs x) x == True -- @ dfs :: [Int] -> AdjacencyIntMap -> [Int] dfs vs = concatMap flatten . dfsForestFrom vs -- | Compute the list of vertices that are /reachable/ from a given source -- vertex in a graph. The vertices in the resulting list appear in the -- /depth-first order/. -- -- @ -- reachable x $ 'empty' == [] -- reachable 1 $ 'vertex' 1 == [1] -- reachable 1 $ 'vertex' 2 == [] -- reachable 1 $ 'edge' 1 1 == [1] -- reachable 1 $ 'edge' 1 2 == [1,2] -- reachable 4 $ 'path' [1..8] == [4..8] -- reachable 4 $ 'circuit' [1..8] == [4..8] ++ [1..3] -- reachable 8 $ 'clique' [8,7..1] == [8] ++ [1..7] -- 'isSubgraphOf' ('vertices' $ reachable x y) y == True -- @ reachable :: Int -> AdjacencyIntMap -> [Int] reachable x = dfs [x] -- | Compute the /topological sort/ of a graph or return @Nothing@ if the graph -- is cyclic. -- -- @ -- topSort (1 * 2 + 3 * 1) == Just [3,1,2] -- topSort (1 * 2 + 2 * 1) == Nothing -- fmap (flip 'isTopSortOf' x) (topSort x) /= Just False -- 'isJust' . topSort == 'isAcyclic' -- @ topSort :: AdjacencyIntMap -> Maybe [Int] topSort m = if isTopSortOf result m then Just result else Nothing where result = Typed.topSort (Typed.fromAdjacencyIntMap m) -- | Check if a given graph is /acyclic/. -- -- @ -- isAcyclic (1 * 2 + 3 * 1) == True -- isAcyclic (1 * 2 + 2 * 1) == False -- isAcyclic . 'circuit' == 'null' -- isAcyclic == 'isJust' . 'topSort' -- @ isAcyclic :: AdjacencyIntMap -> Bool isAcyclic = isJust . topSort -- | Check if a given forest is a correct /depth-first search/ forest of a graph. -- The implementation is based on the paper "Depth-First Search and Strong -- Connectivity in Coq" by François Pottier. -- -- @ -- isDfsForestOf [] 'empty' == True -- isDfsForestOf [] ('vertex' 1) == False -- isDfsForestOf [Node 1 []] ('vertex' 1) == True -- isDfsForestOf [Node 1 []] ('vertex' 2) == False -- isDfsForestOf [Node 1 [], Node 1 []] ('vertex' 1) == False -- isDfsForestOf [Node 1 []] ('edge' 1 1) == True -- isDfsForestOf [Node 1 []] ('edge' 1 2) == False -- isDfsForestOf [Node 1 [], Node 2 []] ('edge' 1 2) == False -- isDfsForestOf [Node 2 [], Node 1 []] ('edge' 1 2) == True -- isDfsForestOf [Node 1 [Node 2 []]] ('edge' 1 2) == True -- isDfsForestOf [Node 1 [], Node 2 []] ('vertices' [1,2]) == True -- isDfsForestOf [Node 2 [], Node 1 []] ('vertices' [1,2]) == True -- isDfsForestOf [Node 1 [Node 2 []]] ('vertices' [1,2]) == False -- isDfsForestOf [Node 1 [Node 2 [Node 3 []]]] ('path' [1,2,3]) == True -- isDfsForestOf [Node 1 [Node 3 [Node 2 []]]] ('path' [1,2,3]) == False -- isDfsForestOf [Node 3 [], Node 1 [Node 2 []]] ('path' [1,2,3]) == True -- isDfsForestOf [Node 2 [Node 3 []], Node 1 []] ('path' [1,2,3]) == True -- isDfsForestOf [Node 1 [], Node 2 [Node 3 []]] ('path' [1,2,3]) == False -- @ isDfsForestOf :: Forest Int -> AdjacencyIntMap -> Bool isDfsForestOf f am = case go IntSet.empty f of Just seen -> seen == vertexIntSet am Nothing -> False where go seen [] = Just seen go seen (t:ts) = do let root = rootLabel t guard $ root `IntSet.notMember` seen guard $ and [ hasEdge root (rootLabel subTree) am | subTree <- subForest t ] newSeen <- go (IntSet.insert root seen) (subForest t) guard $ postIntSet root am `IntSet.isSubsetOf` newSeen go newSeen ts -- | Check if a given list of vertices is a correct /topological sort/ of a graph. -- -- @ -- isTopSortOf [3,1,2] (1 * 2 + 3 * 1) == True -- isTopSortOf [1,2,3] (1 * 2 + 3 * 1) == False -- isTopSortOf [] (1 * 2 + 3 * 1) == False -- isTopSortOf [] 'empty' == True -- isTopSortOf [x] ('vertex' x) == True -- isTopSortOf [x] ('edge' x x) == False -- @ isTopSortOf :: [Int] -> AdjacencyIntMap -> Bool isTopSortOf xs m = go IntSet.empty xs where go seen [] = seen == IntMap.keysSet (adjacencyIntMap m) go seen (v:vs) = postIntSet v m `IntSet.intersection` newSeen == IntSet.empty && go newSeen vs where newSeen = IntSet.insert v seen