----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.AdjacencyMap.Internal -- Copyright : (c) Andrey Mokhov 2016-2018 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : unstable -- -- This module exposes the implementation of adjacency maps. The API is unstable -- and unsafe, and is exposed only for documentation. You should use the -- non-internal module "Algebra.Graph.AdjacencyMap" instead. ----------------------------------------------------------------------------- module Algebra.Graph.AdjacencyMap.Internal ( -- * Adjacency map implementation AdjacencyMap (..), empty, vertex, overlay, connect, fromAdjacencySets, consistent ) where import Data.List import Data.Map.Strict (Map, keysSet, fromSet) import Data.Set (Set) import Control.DeepSeq (NFData (..)) import qualified Data.Map.Strict as Map import qualified Data.Set as Set {-| The 'AdjacencyMap' data type represents a graph by a map of vertices to their adjacency sets. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) The 'Show' instance is defined using basic graph construction primitives: @show (empty :: AdjacencyMap Int) == "empty" show (1 :: AdjacencyMap Int) == "vertex 1" show (1 + 2 :: AdjacencyMap Int) == "vertices [1,2]" show (1 * 2 :: AdjacencyMap Int) == "edge 1 2" show (1 * 2 * 3 :: AdjacencyMap Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: AdjacencyMap Int) == "overlay (vertex 3) (edge 1 2)"@ The 'Eq' instance satisfies all axioms of algebraic graphs: * 'Algebra.Graph.AdjacencyMap.overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'Algebra.Graph.AdjacencyMap.connect' is associative and has 'Algebra.Graph.AdjacencyMap.empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'Algebra.Graph.AdjacencyMap.connect' distributes over 'Algebra.Graph.AdjacencyMap.overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'Algebra.Graph.AdjacencyMap.connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'Algebra.Graph.AdjacencyMap.overlay' has 'Algebra.Graph.AdjacencyMap.empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'Algebra.Graph.AdjacencyMap.connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ and /m/ will denote the number of vertices and edges in the graph, respectively. -} newtype AdjacencyMap a = AM { -- | The /adjacency map/ of the graph: each vertex is associated with a set -- of its direct successors. Complexity: /O(1)/ time and memory. -- -- @ -- adjacencyMap 'empty' == Map.'Map.empty' -- adjacencyMap ('vertex' x) == Map.'Map.singleton' x Set.'Set.empty' -- adjacencyMap ('Algebra.Graph.AdjacencyMap.edge' 1 1) == Map.'Map.singleton' 1 (Set.'Set.singleton' 1) -- adjacencyMap ('Algebra.Graph.AdjacencyMap.edge' 1 2) == Map.'Map.fromList' [(1,Set.'Set.singleton' 2), (2,Set.'Set.empty')] -- @ adjacencyMap :: Map a (Set a) } deriving Eq instance (Ord a, Show a) => Show (AdjacencyMap a) where show (AM m) | null vs = "empty" | null es = vshow vs | vs == used = eshow es | otherwise = "overlay (" ++ vshow (vs \\ used) ++ ") (" ++ eshow es ++ ")" where vs = Set.toAscList (keysSet m) es = internalEdgeList m vshow [x] = "vertex " ++ show x vshow xs = "vertices " ++ show xs eshow [(x, y)] = "edge " ++ show x ++ " " ++ show y eshow xs = "edges " ++ show xs used = Set.toAscList (referredToVertexSet m) -- | Construct the /empty graph/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'Algebra.Graph.AdjacencyMap.isEmpty' empty == True -- 'Algebra.Graph.AdjacencyMap.hasVertex' x empty == False -- 'Algebra.Graph.AdjacencyMap.vertexCount' empty == 0 -- 'Algebra.Graph.AdjacencyMap.edgeCount' empty == 0 -- @ empty :: AdjacencyMap a empty = AM Map.empty {-# NOINLINE [1] empty #-} -- | Construct the graph comprising /a single isolated vertex/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'Algebra.Graph.AdjacencyMap.isEmpty' (vertex x) == False -- 'Algebra.Graph.AdjacencyMap.hasVertex' x (vertex x) == True -- 'Algebra.Graph.AdjacencyMap.vertexCount' (vertex x) == 1 -- 'Algebra.Graph.AdjacencyMap.edgeCount' (vertex x) == 0 -- @ vertex :: a -> AdjacencyMap a vertex x = AM $ Map.singleton x Set.empty {-# NOINLINE [1] vertex #-} -- | /Overlay/ two graphs. This is a commutative, associative and idempotent -- operation with the identity 'empty'. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- 'Algebra.Graph.AdjacencyMap.isEmpty' (overlay x y) == 'Algebra.Graph.AdjacencyMap.isEmpty' x && 'Algebra.Graph.AdjacencyMap.isEmpty' y -- 'Algebra.Graph.AdjacencyMap.hasVertex' z (overlay x y) == 'Algebra.Graph.AdjacencyMap.hasVertex' z x || 'Algebra.Graph.AdjacencyMap.hasVertex' z y -- 'Algebra.Graph.AdjacencyMap.vertexCount' (overlay x y) >= 'Algebra.Graph.AdjacencyMap.vertexCount' x -- 'Algebra.Graph.AdjacencyMap.vertexCount' (overlay x y) <= 'Algebra.Graph.AdjacencyMap.vertexCount' x + 'Algebra.Graph.AdjacencyMap.vertexCount' y -- 'Algebra.Graph.AdjacencyMap.edgeCount' (overlay x y) >= 'Algebra.Graph.AdjacencyMap.edgeCount' x -- 'Algebra.Graph.AdjacencyMap.edgeCount' (overlay x y) <= 'Algebra.Graph.AdjacencyMap.edgeCount' x + 'Algebra.Graph.AdjacencyMap.edgeCount' y -- 'Algebra.Graph.AdjacencyMap.vertexCount' (overlay 1 2) == 2 -- 'Algebra.Graph.AdjacencyMap.edgeCount' (overlay 1 2) == 0 -- @ overlay :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a overlay x y = AM $ Map.unionWith Set.union (adjacencyMap x) (adjacencyMap y) {-# NOINLINE [1] overlay #-} -- | /Connect/ two graphs. This is an associative operation with the identity -- 'empty', which distributes over 'overlay' and obeys the decomposition axiom. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. Note that the -- number of edges in the resulting graph is quadratic with respect to the number -- of vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect x y) == 'isEmpty' x && 'Algebra.Graph.AdjacencyMap.isEmpty' y -- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'Algebra.Graph.AdjacencyMap.hasVertex' z y -- 'vertexCount' (connect x y) >= 'vertexCount' x -- 'vertexCount' (connect x y) <= 'vertexCount' x + 'Algebra.Graph.AdjacencyMap.vertexCount' y -- 'edgeCount' (connect x y) >= 'edgeCount' x -- 'edgeCount' (connect x y) >= 'edgeCount' y -- 'edgeCount' (connect x y) >= 'vertexCount' x * 'Algebra.Graph.AdjacencyMap.vertexCount' y -- 'edgeCount' (connect x y) <= 'vertexCount' x * 'Algebra.Graph.AdjacencyMap.vertexCount' y + 'Algebra.Graph.AdjacencyMap.edgeCount' x + 'Algebra.Graph.AdjacencyMap.edgeCount' y -- 'vertexCount' (connect 1 2) == 2 -- 'edgeCount' (connect 1 2) == 1 -- @ connect :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a connect x y = AM $ Map.unionsWith Set.union [ adjacencyMap x, adjacencyMap y, fromSet (const . keysSet $ adjacencyMap y) (keysSet $ adjacencyMap x) ] {-# NOINLINE [1] connect #-} instance (Ord a, Num a) => Num (AdjacencyMap a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect signum = const empty abs = id negate = id instance NFData a => NFData (AdjacencyMap a) where rnf (AM a) = rnf a -- | Construct a graph from a list of adjacency sets. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- fromAdjacencySets [] == 'Algebra.Graph.AdjacencyMap.empty' -- fromAdjacencySets [(x, Set.'Set.empty')] == 'Algebra.Graph.AdjacencyMap.vertex' x -- fromAdjacencySets [(x, Set.'Set.singleton' y)] == 'Algebra.Graph.AdjacencyMap.edge' x y -- fromAdjacencySets . map (fmap Set.'Set.fromList') . 'Algebra.Graph.AdjacencyMap.adjacencyList' == id -- 'Algebra.Graph.AdjacencyMap.overlay' (fromAdjacencySets xs) (fromAdjacencySets ys) == fromAdjacencySets (xs ++ ys) -- @ fromAdjacencySets :: Ord a => [(a, Set a)] -> AdjacencyMap a fromAdjacencySets ss = AM $ Map.unionWith Set.union vs es where vs = Map.fromSet (const Set.empty) . Set.unions $ map snd ss es = Map.fromListWith Set.union ss -- | Check if the internal graph representation is consistent, i.e. that all -- edges refer to existing vertices. It should be impossible to create an -- inconsistent adjacency map, and we use this function in testing. -- /Note: this function is for internal use only/. -- -- @ -- consistent 'Algebra.Graph.AdjacencyMap.empty' == True -- consistent ('Algebra.Graph.AdjacencyMap.vertex' x) == True -- consistent ('Algebra.Graph.AdjacencyMap.overlay' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.connect' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.edge' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.edges' xs) == True -- consistent ('Algebra.Graph.AdjacencyMap.stars' xs) == True -- @ consistent :: Ord a => AdjacencyMap a -> Bool consistent (AM m) = referredToVertexSet m `Set.isSubsetOf` keysSet m -- The set of vertices that are referred to by the edges referredToVertexSet :: Ord a => Map a (Set a) -> Set a referredToVertexSet = Set.fromList . uncurry (++) . unzip . internalEdgeList -- The list of edges in adjacency map internalEdgeList :: Map a (Set a) -> [(a, a)] internalEdgeList m = [ (x, y) | (x, ys) <- Map.toAscList m, y <- Set.toAscList ys ]