{-# LANGUAGE RankNTypes #-} ----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Fold -- Copyright : (c) Andrey Mokhov 2016-2018 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the 'Fold' data type -- the Boehm-Berarducci encoding of -- algebraic graphs, which is used for generalised graph folding and for the -- implementation of polymorphic graph construction and transformation algorithms. -- 'Fold' is an instance of type classes defined in modules "Algebra.Graph.Class" -- and "Algebra.Graph.HigherKinded.Class", which can be used for polymorphic -- graph construction and manipulation. ----------------------------------------------------------------------------- module Algebra.Graph.Fold ( -- * Boehm-Berarducci encoding of algebraic graphs Fold, -- * Basic graph construction primitives empty, vertex, edge, overlay, connect, vertices, edges, overlays, connects, -- * Graph folding foldg, -- * Relations on graphs isSubgraphOf, -- * Graph properties isEmpty, size, hasVertex, hasEdge, vertexCount, edgeCount, vertexList, edgeList, vertexSet, vertexIntSet, edgeSet, adjacencyList, -- * Standard families of graphs path, circuit, clique, biclique, star, stars, -- * Graph transformation removeVertex, removeEdge, transpose, induce, simplify, ) where import Prelude () import Prelude.Compat import Control.Applicative (Alternative, liftA2) import Control.Monad.Compat (MonadPlus (..), ap) import Data.Function import Control.DeepSeq (NFData (..)) import Algebra.Graph.ToGraph (ToGraph, ToVertex, toGraph) import qualified Algebra.Graph as G import qualified Algebra.Graph.AdjacencyMap as AM import qualified Algebra.Graph.ToGraph as T import qualified Control.Applicative as Ap import qualified Data.IntSet as IntSet import qualified Data.Set as Set {-| The 'Fold' data type is the Boehm-Berarducci encoding of the core graph construction primitives 'empty', 'vertex', 'overlay' and 'connect'. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) The 'Show' instance is defined using basic graph construction primitives: @show (empty :: Fold Int) == "empty" show (1 :: Fold Int) == "vertex 1" show (1 + 2 :: Fold Int) == "vertices [1,2]" show (1 * 2 :: Fold Int) == "edge 1 2" show (1 * 2 * 3 :: Fold Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: Fold Int) == "overlay (vertex 3) (edge 1 2)"@ The 'Eq' instance is currently implemented using the 'AM.AdjacencyMap' as the /canonical graph representation/ and satisfies all axioms of algebraic graphs: * 'overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'connect' is associative and has 'empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'connect' distributes over 'overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'overlay' has 'empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ will denote the number of vertices in the graph, /m/ will denote the number of edges in the graph, and /s/ will denote the /size/ of the corresponding graph expression. For example, if g is a 'Fold' then /n/, /m/ and /s/ can be computed as follows: @n == 'vertexCount' g m == 'edgeCount' g s == 'size' g@ Note that 'size' is slightly different from the 'length' method of the 'Foldable' type class, as the latter does not count 'empty' leaves of the expression: @'length' 'empty' == 0 'size' 'empty' == 1 'length' ('vertex' x) == 1 'size' ('vertex' x) == 1 'length' ('empty' + 'empty') == 0 'size' ('empty' + 'empty') == 2@ The 'size' of any graph is positive, and the difference @('size' g - 'length' g)@ corresponds to the number of occurrences of 'empty' in an expression @g@. Converting a 'Fold' to the corresponding 'AM.AdjacencyMap' takes /O(s + m * log(m))/ time and /O(s + m)/ memory. This is also the complexity of the graph equality test, because it is currently implemented by converting graph expressions to canonical representations based on adjacency maps. -} newtype Fold a = Fold { runFold :: forall b. b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> b } instance (Ord a, Show a) => Show (Fold a) where show = show . foldg AM.empty AM.vertex AM.overlay AM.connect instance Ord a => Eq (Fold a) where x == y = T.adjacencyMap x == T.adjacencyMap y instance NFData a => NFData (Fold a) where rnf = foldg () rnf seq seq instance Num a => Num (Fold a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect signum = const empty abs = id negate = id instance Functor Fold where fmap f = foldg empty (vertex . f) overlay connect instance Applicative Fold where pure = vertex (<*>) = ap instance Alternative Fold where empty = empty (<|>) = overlay instance MonadPlus Fold where mzero = empty mplus = overlay instance Monad Fold where return = vertex g >>=f = foldg empty f overlay connect g instance Foldable Fold where foldMap f = foldg mempty f mappend mappend instance Traversable Fold where traverse f = foldg (pure empty) (fmap vertex . f) (liftA2 overlay) (liftA2 connect) instance ToGraph (Fold a) where type ToVertex (Fold a) = a foldg = foldg -- | Construct the /empty graph/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' empty == True -- 'hasVertex' x empty == False -- 'vertexCount' empty == 0 -- 'edgeCount' empty == 0 -- 'size' empty == 1 -- @ empty :: Fold a empty = Fold $ \e _ _ _ -> e {-# NOINLINE [1] empty #-} -- | Construct the graph comprising /a single isolated vertex/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' (vertex x) == False -- 'hasVertex' x (vertex x) == True -- 'vertexCount' (vertex x) == 1 -- 'edgeCount' (vertex x) == 0 -- 'size' (vertex x) == 1 -- @ vertex :: a -> Fold a vertex x = Fold $ \_ v _ _ -> v x {-# NOINLINE [1] vertex #-} -- | Construct the graph comprising /a single edge/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- edge x y == 'connect' ('vertex' x) ('vertex' y) -- 'hasEdge' x y (edge x y) == True -- 'edgeCount' (edge x y) == 1 -- 'vertexCount' (edge 1 1) == 1 -- 'vertexCount' (edge 1 2) == 2 -- @ edge :: a -> a -> Fold a edge x y = Fold $ \_ v _ c -> v x `c` v y -- | /Overlay/ two graphs. This is a commutative, associative and idempotent -- operation with the identity 'empty'. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. -- -- @ -- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (overlay x y) >= 'vertexCount' x -- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (overlay x y) >= 'edgeCount' x -- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y -- 'size' (overlay x y) == 'size' x + 'size' y -- 'vertexCount' (overlay 1 2) == 2 -- 'edgeCount' (overlay 1 2) == 0 -- @ overlay :: Fold a -> Fold a -> Fold a overlay x y = Fold $ \e v o c -> runFold x e v o c `o` runFold y e v o c {-# NOINLINE [1] overlay #-} -- | /Connect/ two graphs. This is an associative operation with the identity -- 'empty', which distributes over 'overlay' and obeys the decomposition axiom. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. Note that the number -- of edges in the resulting graph is quadratic with respect to the number of -- vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (connect x y) >= 'vertexCount' x -- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (connect x y) >= 'edgeCount' x -- 'edgeCount' (connect x y) >= 'edgeCount' y -- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y -- 'size' (connect x y) == 'size' x + 'size' y -- 'vertexCount' (connect 1 2) == 2 -- 'edgeCount' (connect 1 2) == 1 -- @ connect :: Fold a -> Fold a -> Fold a connect x y = Fold $ \e v o c -> runFold x e v o c `c` runFold y e v o c {-# NOINLINE [1] connect #-} -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'vertexSet' . vertices == Set.'Set.fromList' -- @ vertices :: [a] -> Fold a vertices = overlays . map vertex {-# NOINLINE [1] vertices #-} -- | Construct the graph from a list of edges. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- edges [] == 'empty' -- edges [(x,y)] == 'edge' x y -- 'edgeCount' . edges == 'length' . 'Data.List.nub' -- @ edges :: [(a, a)] -> Fold a edges es = Fold $ \e v o c -> foldr (flip o . uncurry (c `on` v)) e es -- | Overlay a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- overlays == 'foldr' 'overlay' 'empty' -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: [Fold a] -> Fold a overlays = foldr overlay empty {-# INLINE [2] overlays #-} -- | Connect a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- connects [] == 'empty' -- connects [x] == x -- connects [x,y] == 'connect' x y -- connects == 'foldr' 'connect' 'empty' -- 'isEmpty' . connects == 'all' 'isEmpty' -- @ connects :: [Fold a] -> Fold a connects = foldr connect empty {-# INLINE [2] connects #-} -- | Generalised 'Graph' folding: recursively collapse a 'Graph' by applying -- the provided functions to the leaves and internal nodes of the expression. -- The order of arguments is: empty, vertex, overlay and connect. -- Complexity: /O(s)/ applications of given functions. As an example, the -- complexity of 'size' is /O(s)/, since all functions have cost /O(1)/. -- -- @ -- foldg 'empty' 'vertex' 'overlay' 'connect' == id -- foldg 'empty' 'vertex' 'overlay' (flip 'connect') == 'transpose' -- foldg [] return (++) (++) == 'Data.Foldable.toList' -- foldg 0 (const 1) (+) (+) == 'Data.Foldable.length' -- foldg 1 (const 1) (+) (+) == 'size' -- foldg True (const False) (&&) (&&) == 'isEmpty' -- @ foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> Fold a -> b foldg e v o c g = runFold g e v o c -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- isSubgraphOf 'empty' x == True -- isSubgraphOf ('vertex' x) 'empty' == False -- isSubgraphOf x ('overlay' x y) == True -- isSubgraphOf ('overlay' x y) ('connect' x y) == True -- isSubgraphOf ('path' xs) ('circuit' xs) == True -- @ isSubgraphOf :: Ord a => Fold a -> Fold a -> Bool isSubgraphOf x y = overlay x y == y -- | Check if a graph is empty. A convenient alias for 'null'. -- Complexity: /O(s)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' x y) == False -- @ isEmpty :: Fold a -> Bool isEmpty = T.isEmpty -- | The /size/ of a graph, i.e. the number of leaves of the expression -- including 'empty' leaves. -- Complexity: /O(s)/ time. -- -- @ -- size 'empty' == 1 -- size ('vertex' x) == 1 -- size ('overlay' x y) == size x + size y -- size ('connect' x y) == size x + size y -- size x >= 1 -- size x >= 'vertexCount' x -- @ size :: Fold a -> Int size = T.size -- | Check if a graph contains a given vertex. A convenient alias for `elem`. -- Complexity: /O(s)/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' x) == True -- hasVertex 1 ('vertex' 2) == False -- hasVertex x . 'removeVertex' x == const False -- @ hasVertex :: Eq a => a -> Fold a -> Bool hasVertex = T.hasVertex -- | Check if a graph contains a given edge. -- Complexity: /O(s)/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' x y) == True -- hasEdge x y . 'removeEdge' x y == const False -- hasEdge x y == 'elem' (x,y) . 'edgeList' -- @ hasEdge :: Eq a => a -> a -> Fold a -> Bool hasEdge = T.hasEdge -- | The number of vertices in a graph. -- Complexity: /O(s * log(n))/ time. -- -- @ -- vertexCount 'empty' == 0 -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- @ vertexCount :: Ord a => Fold a -> Int vertexCount = T.vertexCount -- | The number of edges in a graph. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeCount 'empty' == 0 -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' x y) == 1 -- edgeCount == 'length' . 'edgeList' -- @ edgeCount :: Ord a => Fold a -> Int edgeCount = T.edgeCount -- | The sorted list of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ vertexList :: Ord a => Fold a -> [a] vertexList = T.vertexList -- | The sorted list of edges of a graph. -- Complexity: /O(s + m * log(m))/ time and /O(m)/ memory. Note that the number of -- edges /m/ of a graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' x y) == [(x,y)] -- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)] -- edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort' -- edgeList . 'transpose' == 'Data.List.sort' . map 'Data.Tuple.swap' . edgeList -- @ edgeList :: Ord a => Fold a -> [(a, a)] edgeList = T.edgeList -- | The set of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexSet 'empty' == Set.'Set.empty' -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices' == Set.'Set.fromList' -- vertexSet . 'clique' == Set.'Set.fromList' -- @ vertexSet :: Ord a => Fold a -> Set.Set a vertexSet = T.vertexSet -- | The set of vertices of a given graph. Like 'vertexSet' but specialised for -- graphs with vertices of type 'Int'. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexIntSet 'empty' == IntSet.'IntSet.empty' -- vertexIntSet . 'vertex' == IntSet.'IntSet.singleton' -- vertexIntSet . 'vertices' == IntSet.'IntSet.fromList' -- vertexIntSet . 'clique' == IntSet.'IntSet.fromList' -- @ vertexIntSet :: Fold Int -> IntSet.IntSet vertexIntSet = T.vertexIntSet -- | The set of edges of a given graph. -- Complexity: /O(s * log(m))/ time and /O(m)/ memory. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y) -- edgeSet . 'edges' == Set.'Set.fromList' -- @ edgeSet :: Ord a => Fold a -> Set.Set (a, a) edgeSet = T.edgeSet -- | The sorted /adjacency list/ of a graph. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- adjacencyList 'empty' == [] -- adjacencyList ('vertex' x) == [(x, [])] -- adjacencyList ('edge' 1 2) == [(1, [2]), (2, [])] -- adjacencyList ('star' 2 [3,1]) == [(1, []), (2, [1,3]), (3, [])] -- 'stars' . adjacencyList == id -- @ adjacencyList :: Ord a => Fold a -> [(a, [a])] adjacencyList = T.adjacencyList -- | The /path/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- path [] == 'empty' -- path [x] == 'vertex' x -- path [x,y] == 'edge' x y -- path . 'reverse' == 'transpose' . path -- @ path :: [a] -> Fold a path xs = case xs of [] -> empty [x] -> vertex x (_:ys) -> edges (zip xs ys) -- | The /circuit/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- circuit [] == 'empty' -- circuit [x] == 'edge' x x -- circuit [x,y] == 'edges' [(x,y), (y,x)] -- circuit . 'reverse' == 'transpose' . circuit -- @ circuit :: [a] -> Fold a circuit [] = empty circuit (x:xs) = path $ [x] ++ xs ++ [x] -- | The /clique/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- clique [] == 'empty' -- clique [x] == 'vertex' x -- clique [x,y] == 'edge' x y -- clique [x,y,z] == 'edges' [(x,y), (x,z), (y,z)] -- clique (xs ++ ys) == 'connect' (clique xs) (clique ys) -- clique . 'reverse' == 'transpose' . clique -- @ clique :: [a] -> Fold a clique = connects . map vertex {-# NOINLINE [1] clique #-} -- | The /biclique/ on two lists of vertices. -- Complexity: /O(L1 + L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- biclique [] [] == 'empty' -- biclique [x] [] == 'vertex' x -- biclique [] [y] == 'vertex' y -- biclique [x1,x2] [y1,y2] == 'edges' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)] -- biclique xs ys == 'connect' ('vertices' xs) ('vertices' ys) -- @ biclique :: [a] -> [a] -> Fold a biclique xs [] = vertices xs biclique [] ys = vertices ys biclique xs ys = connect (vertices xs) (vertices ys) -- | The /star/ formed by a centre vertex connected to a list of leaves. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- star x [] == 'vertex' x -- star x [y] == 'edge' x y -- star x [y,z] == 'edges' [(x,y), (x,z)] -- star x ys == 'connect' ('vertex' x) ('vertices' ys) -- @ star :: a -> [a] -> Fold a star x [] = vertex x star x ys = connect (vertex x) (vertices ys) {-# INLINE star #-} -- | The /stars/ formed by overlaying a list of 'star's. An inverse of -- 'adjacencyList'. -- Complexity: /O(L)/ time, memory and size, where /L/ is the total size of the -- input. -- -- @ -- stars [] == 'empty' -- stars [(x, [])] == 'vertex' x -- stars [(x, [y])] == 'edge' x y -- stars [(x, ys)] == 'star' x ys -- stars == 'overlays' . map (uncurry 'star') -- stars . 'adjacencyList' == id -- 'overlay' (stars xs) (stars ys) == stars (xs ++ ys) -- @ stars :: [(a, [a])] -> Fold a stars = overlays . map (uncurry star) {-# INLINE stars #-} -- | Remove a vertex from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex 1 ('vertex' 2) == 'vertex' 2 -- removeVertex x ('edge' x x) == 'empty' -- removeVertex 1 ('edge' 1 2) == 'vertex' 2 -- removeVertex x . removeVertex x == removeVertex x -- @ removeVertex :: Eq a => a -> Fold a -> Fold a removeVertex v = induce (/= v) -- | Remove an edge from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeEdge x y ('edge' x y) == 'vertices' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- 'size' (removeEdge x y z) <= 3 * 'size' z -- @ removeEdge :: Eq a => a -> a -> Fold a -> Fold a removeEdge s t = filterContext s (/=s) (/=t) -- TODO: Export -- | Filter vertices in a subgraph context. filterContext :: Eq a => a -> (a -> Bool) -> (a -> Bool) -> Fold a -> Fold a filterContext s i o g = maybe g go $ G.context (==s) (toGraph g) where go (G.Context is os) = induce (/=s) g `overlay` transpose (star s (filter i is)) `overlay` star s (filter o os) -- | Transpose a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' x y) == 'edge' y x -- transpose . transpose == id -- transpose ('box' x y) == 'box' (transpose x) (transpose y) -- 'edgeList' . transpose == 'Data.List.sort' . map 'Data.Tuple.swap' . 'edgeList' -- @ transpose :: Fold a -> Fold a transpose = foldg empty vertex overlay (flip connect) {-# NOINLINE [1] transpose #-} {-# RULES "transpose/empty" transpose empty = empty "transpose/vertex" forall x. transpose (vertex x) = vertex x "transpose/overlay" forall g1 g2. transpose (overlay g1 g2) = overlay (transpose g1) (transpose g2) "transpose/connect" forall g1 g2. transpose (connect g1 g2) = connect (transpose g2) (transpose g1) "transpose/overlays" forall xs. transpose (overlays xs) = overlays (map transpose xs) "transpose/connects" forall xs. transpose (connects xs) = connects (reverse (map transpose xs)) "transpose/vertices" forall xs. transpose (vertices xs) = vertices xs "transpose/clique" forall xs. transpose (clique xs) = clique (reverse xs) #-} -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- induce (const True ) x == x -- induce (const False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: (a -> Bool) -> Fold a -> Fold a induce p = foldg empty (\x -> if p x then vertex x else empty) (k overlay) (k connect) where k f x y | isEmpty x = y -- Constant folding to get rid of Empty leaves | isEmpty y = x | otherwise = f x y -- | Simplify a graph expression. Semantically, this is the identity function, -- but it simplifies a given polymorphic graph expression according to the laws -- of the algebra. The function does not compute the simplest possible expression, -- but uses heuristics to obtain useful simplifications in reasonable time. -- Complexity: the function performs /O(s)/ graph comparisons. It is guaranteed -- that the size of the result does not exceed the size of the given expression. -- Below the operator @~>@ denotes the /is simplified to/ relation. -- -- @ -- simplify == id -- 'size' (simplify x) <= 'size' x -- simplify 'empty' ~> 'empty' -- simplify 1 ~> 1 -- simplify (1 + 1) ~> 1 -- simplify (1 + 2 + 1) ~> 1 + 2 -- simplify (1 * 1 * 1) ~> 1 * 1 -- @ simplify :: Ord a => Fold a -> Fold a simplify = foldg empty vertex (simple overlay) (simple connect) simple :: Eq g => (g -> g -> g) -> g -> g -> g simple op x y | x == z = x | y == z = y | otherwise = z where z = op x y