----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Relation.Internal -- Copyright : (c) Andrey Mokhov 2016-2018 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : unstable -- -- This module exposes the implementation of the 'Relation' data type. The API -- is unstable and unsafe, and is exposed only for documentation. You should -- use the non-internal module "Algebra.Graph.Relation" instead. ----------------------------------------------------------------------------- module Algebra.Graph.Relation.Internal ( -- * Binary relation implementation Relation (..), empty, vertex, overlay, connect, setProduct, consistent, referredToVertexSet ) where import Data.Set (Set, union) import qualified Data.Set as Set import Control.DeepSeq (NFData, rnf) {-| The 'Relation' data type represents a graph as a /binary relation/. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) The 'Show' instance is defined using basic graph construction primitives: @show (empty :: Relation Int) == "empty" show (1 :: Relation Int) == "vertex 1" show (1 + 2 :: Relation Int) == "vertices [1,2]" show (1 * 2 :: Relation Int) == "edge 1 2" show (1 * 2 * 3 :: Relation Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: Relation Int) == "overlay (vertex 3) (edge 1 2)"@ The 'Eq' instance satisfies all axioms of algebraic graphs: * 'Algebra.Graph.Relation.overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'Algebra.Graph.Relation.connect' is associative and has 'Algebra.Graph.Relation.empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'Algebra.Graph.Relation.connect' distributes over 'Algebra.Graph.Relation.overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'Algebra.Graph.Relation.connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'Algebra.Graph.Relation.overlay' has 'Algebra.Graph.Relation.empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'Algebra.Graph.Relation.connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ and /m/ will denote the number of vertices and edges in the graph, respectively. -} data Relation a = Relation { -- | The /domain/ of the relation. domain :: Set a, -- | The set of pairs of elements that are /related/. It is guaranteed that -- each element belongs to the domain. relation :: Set (a, a) } deriving Eq instance (Ord a, Show a) => Show (Relation a) where show (Relation d r) | Set.null d = "empty" | Set.null r = vshow (Set.toAscList d) | d == used = eshow (Set.toAscList r) | otherwise = "overlay (" ++ vshow (Set.toAscList $ Set.difference d used) ++ ") (" ++ eshow (Set.toAscList r) ++ ")" where vshow [x] = "vertex " ++ show x vshow xs = "vertices " ++ show xs eshow [(x, y)] = "edge " ++ show x ++ " " ++ show y eshow xs = "edges " ++ show xs used = referredToVertexSet r -- | Construct the /empty graph/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'Algebra.Graph.Relation.isEmpty' empty == True -- 'Algebra.Graph.Relation.hasVertex' x empty == False -- 'Algebra.Graph.Relation.vertexCount' empty == 0 -- 'Algebra.Graph.Relation.edgeCount' empty == 0 -- @ empty :: Relation a empty = Relation Set.empty Set.empty -- | Construct the graph comprising /a single isolated vertex/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'Algebra.Graph.Relation.isEmpty' (vertex x) == False -- 'Algebra.Graph.Relation.hasVertex' x (vertex x) == True -- 'Algebra.Graph.Relation.vertexCount' (vertex x) == 1 -- 'Algebra.Graph.Relation.edgeCount' (vertex x) == 0 -- @ vertex :: a -> Relation a vertex x = Relation (Set.singleton x) Set.empty -- | /Overlay/ two graphs. This is a commutative, associative and idempotent -- operation with the identity 'empty'. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- 'Algebra.Graph.Relation.isEmpty' (overlay x y) == 'Algebra.Graph.Relation.isEmpty' x && 'iAlgebra.Graph.Relation.sEmpty' y -- 'Algebra.Graph.Relation.hasVertex' z (overlay x y) == 'Algebra.Graph.Relation.hasVertex' z x || 'Algebra.Graph.Relation.hasVertex' z y -- 'Algebra.Graph.Relation.vertexCount' (overlay x y) >= 'Algebra.Graph.Relation.vertexCount' x -- 'Algebra.Graph.Relation.vertexCount' (overlay x y) <= 'Algebra.Graph.Relation.vertexCount' x + 'Algebra.Graph.Relation.vertexCount' y -- 'Algebra.Graph.Relation.edgeCount' (overlay x y) >= 'Algebra.Graph.Relation.edgeCount' x -- 'Algebra.Graph.Relation.edgeCount' (overlay x y) <= 'Algebra.Graph.Relation.edgeCount' x + 'Algebra.Graph.Relation.edgeCount' y -- 'Algebra.Graph.Relation.vertexCount' (overlay 1 2) == 2 -- 'Algebra.Graph.Relation.edgeCount' (overlay 1 2) == 0 -- @ overlay :: Ord a => Relation a -> Relation a -> Relation a overlay x y = Relation (domain x `union` domain y) (relation x `union` relation y) -- | /Connect/ two graphs. This is an associative operation with the identity -- 'empty', which distributes over 'overlay' and obeys the decomposition axiom. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. Note that the -- number of edges in the resulting graph is quadratic with respect to the number -- of vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'Algebra.Graph.Relation.isEmpty' (connect x y) == 'Algebra.Graph.Relation.isEmpty' x && 'Algebra.Graph.Relation.isEmpty' y -- 'Algebra.Graph.Relation.hasVertex' z (connect x y) == 'Algebra.Graph.Relation.hasVertex' z x || 'Algebra.Graph.Relation.hasVertex' z y -- 'Algebra.Graph.Relation.vertexCount' (connect x y) >= 'Algebra.Graph.Relation.vertexCount' x -- 'Algebra.Graph.Relation.vertexCount' (connect x y) <= 'Algebra.Graph.Relation.vertexCount' x + 'Algebra.Graph.Relation.vertexCount' y -- 'Algebra.Graph.Relation.edgeCount' (connect x y) >= 'Algebra.Graph.Relation.edgeCount' x -- 'Algebra.Graph.Relation.edgeCount' (connect x y) >= 'Algebra.Graph.Relation.edgeCount' y -- 'Algebra.Graph.Relation.edgeCount' (connect x y) >= 'Algebra.Graph.Relation.vertexCount' x * 'Algebra.Graph.Relation.vertexCount' y -- 'Algebra.Graph.Relation.edgeCount' (connect x y) <= 'Algebra.Graph.Relation.vertexCount' x * 'Algebra.Graph.Relation.vertexCount' y + 'Algebra.Graph.Relation.edgeCount' x + 'Algebra.Graph.Relation.edgeCount' y -- 'Algebra.Graph.Relation.vertexCount' (connect 1 2) == 2 -- 'Algebra.Graph.Relation.edgeCount' (connect 1 2) == 1 -- @ connect :: Ord a => Relation a -> Relation a -> Relation a connect x y = Relation (domain x `union` domain y) (relation x `union` relation y `union` (domain x `setProduct` domain y)) instance NFData a => NFData (Relation a) where rnf (Relation d r) = rnf d `seq` rnf r `seq` () -- | Compute the Cartesian product of two sets. /Note: this function is for internal use only/. setProduct :: Set a -> Set b -> Set (a, b) setProduct x y = Set.fromDistinctAscList [ (a, b) | a <- Set.toAscList x, b <- Set.toAscList y ] instance (Ord a, Num a) => Num (Relation a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect signum = const empty abs = id negate = id -- | Check if the internal representation of a relation is consistent, i.e. if all -- pairs of elements in the 'relation' refer to existing elements in the 'domain'. -- It should be impossible to create an inconsistent 'Relation', and we use this -- function in testing. -- /Note: this function is for internal use only/. -- -- @ -- consistent 'Algebra.Graph.Relation.empty' == True -- consistent ('Algebra.Graph.Relation.vertex' x) == True -- consistent ('Algebra.Graph.Relation.overlay' x y) == True -- consistent ('Algebra.Graph.Relation.connect' x y) == True -- consistent ('Algebra.Graph.Relation.edge' x y) == True -- consistent ('Algebra.Graph.Relation.edges' xs) == True -- consistent ('Algebra.Graph.Relation.stars' xs) == True -- @ consistent :: Ord a => Relation a -> Bool consistent (Relation d r) = referredToVertexSet r `Set.isSubsetOf` d -- | The set of elements that appear in a given set of pairs. -- /Note: this function is for internal use only/. referredToVertexSet :: Ord a => Set (a, a) -> Set a referredToVertexSet = Set.fromList . uncurry (++) . unzip . Set.toAscList