----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.AdjacencyMap.Internal -- Copyright : (c) Andrey Mokhov 2016-2018 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : unstable -- -- This module exposes the implementation of adjacency maps. The API is unstable -- and unsafe, and is exposed only for documentation. You should use the -- non-internal module "Algebra.Graph.AdjacencyMap" instead. ----------------------------------------------------------------------------- module Algebra.Graph.AdjacencyMap.Internal ( -- * Adjacency map implementation AdjacencyMap (..), consistent, internalEdgeList, referredToVertexSet ) where import Prelude () import Prelude.Compat hiding (null) import Control.DeepSeq import Data.Foldable (foldMap) import Data.List import Data.Map.Strict (Map, keysSet, fromSet) import Data.Monoid import Data.Set (Set) import qualified Data.Map.Strict as Map import qualified Data.Set as Set {-| The 'AdjacencyMap' data type represents a graph by a map of vertices to their adjacency sets. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) __Note:__ the 'Num' instance does not satisfy several "customary laws" of 'Num', which dictate that 'fromInteger' @0@ and 'fromInteger' @1@ should act as additive and multiplicative identities, and 'negate' as additive inverse. Nevertheless, overloading 'fromInteger', '+' and '*' is very convenient when working with algebraic graphs; we hope that in future Haskell's Prelude will provide a more fine-grained class hierarchy for algebraic structures, which we would be able to utilise without violating any laws. The 'Show' instance is defined using basic graph construction primitives: @show (empty :: AdjacencyMap Int) == "empty" show (1 :: AdjacencyMap Int) == "vertex 1" show (1 + 2 :: AdjacencyMap Int) == "vertices [1,2]" show (1 * 2 :: AdjacencyMap Int) == "edge 1 2" show (1 * 2 * 3 :: AdjacencyMap Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: AdjacencyMap Int) == "overlay (vertex 3) (edge 1 2)"@ The 'Eq' instance satisfies all axioms of algebraic graphs: * 'Algebra.Graph.AdjacencyMap.overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'Algebra.Graph.AdjacencyMap.connect' is associative and has 'Algebra.Graph.AdjacencyMap.empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'Algebra.Graph.AdjacencyMap.connect' distributes over 'Algebra.Graph.AdjacencyMap.overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'Algebra.Graph.AdjacencyMap.connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'Algebra.Graph.AdjacencyMap.overlay' has 'Algebra.Graph.AdjacencyMap.empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'Algebra.Graph.AdjacencyMap.connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ and /m/ will denote the number of vertices and edges in the graph, respectively. The total order on graphs is defined using /size-lexicographic/ comparison: * Compare the number of vertices. In case of a tie, continue. * Compare the sets of vertices. In case of a tie, continue. * Compare the number of edges. In case of a tie, continue. * Compare the sets of edges. Here are a few examples: @'Algebra.Graph.AdjacencyMap.vertex' 1 < 'Algebra.Graph.AdjacencyMap.vertex' 2 'Algebra.Graph.AdjacencyMap.vertex' 3 < 'Algebra.Graph.AdjacencyMap.edge' 1 2 'Algebra.Graph.AdjacencyMap.vertex' 1 < 'Algebra.Graph.AdjacencyMap.edge' 1 1 'Algebra.Graph.AdjacencyMap.edge' 1 1 < 'Algebra.Graph.AdjacencyMap.edge' 1 2 'Algebra.Graph.AdjacencyMap.edge' 1 2 < 'Algebra.Graph.AdjacencyMap.edge' 1 1 + 'Algebra.Graph.AdjacencyMap.edge' 2 2 'Algebra.Graph.AdjacencyMap.edge' 1 2 < 'Algebra.Graph.AdjacencyMap.edge' 1 3@ Note that the resulting order refines the 'Algebra.Graph.AdjacencyMap.isSubgraphOf' relation and is compatible with 'Algebra.Graph.AdjacencyMap.overlay' and 'Algebra.Graph.AdjacencyMap.connect' operations: @'Algebra.Graph.AdjacencyMap.isSubgraphOf' x y ==> x <= y@ @'Algebra.Graph.AdjacencyMap.empty' <= x x <= x + y x + y <= x * y@ -} newtype AdjacencyMap a = AM { -- | The /adjacency map/ of a graph: each vertex is associated with a set of -- its direct successors. Complexity: /O(1)/ time and memory. -- -- @ -- adjacencyMap 'Algebra.Graph.AdjacencyMap.empty' == Map.'Map.empty' -- adjacencyMap ('Algebra.Graph.AdjacencyMap.vertex' x) == Map.'Map.singleton' x Set.'Set.empty' -- adjacencyMap ('Algebra.Graph.AdjacencyMap.edge' 1 1) == Map.'Map.singleton' 1 (Set.'Set.singleton' 1) -- adjacencyMap ('Algebra.Graph.AdjacencyMap.edge' 1 2) == Map.'Map.fromList' [(1,Set.'Set.singleton' 2), (2,Set.'Set.empty')] -- @ adjacencyMap :: Map a (Set a) } deriving Eq instance Ord a => Ord (AdjacencyMap a) where compare (AM x) (AM y) = mconcat [ compare (vNum x) (vNum y) , compare (vSet x) (vSet y) , compare (eNum x) (eNum y) , compare x y ] where vNum = Map.size vSet = Map.keysSet eNum = getSum . foldMap (Sum . Set.size) instance (Ord a, Show a) => Show (AdjacencyMap a) where showsPrec p (AM m) | null vs = showString "empty" | null es = showParen (p > 10) $ vshow vs | vs == used = showParen (p > 10) $ eshow es | otherwise = showParen (p > 10) $ showString "overlay (" . vshow (vs \\ used) . showString ") (" . eshow es . showString ")" where vs = Set.toAscList (keysSet m) es = internalEdgeList m vshow [x] = showString "vertex " . showsPrec 11 x vshow xs = showString "vertices " . showsPrec 11 xs eshow [(x, y)] = showString "edge " . showsPrec 11 x . showString " " . showsPrec 11 y eshow xs = showString "edges " . showsPrec 11 xs used = Set.toAscList (referredToVertexSet m) -- | __Note:__ this does not satisfy the usual ring laws; see 'AdjacencyMap' -- for more details. instance (Ord a, Num a) => Num (AdjacencyMap a) where fromInteger x = AM $ Map.singleton (fromInteger x) Set.empty x + y = AM $ Map.unionWith Set.union (adjacencyMap x) (adjacencyMap y) x * y = AM $ Map.unionsWith Set.union [ adjacencyMap x, adjacencyMap y, fromSet (const . keysSet $ adjacencyMap y) (keysSet $ adjacencyMap x) ] signum = const (AM Map.empty) abs = id negate = id instance NFData a => NFData (AdjacencyMap a) where rnf (AM a) = rnf a -- | Check if the internal graph representation is consistent, i.e. that all -- edges refer to existing vertices. It should be impossible to create an -- inconsistent adjacency map, and we use this function in testing. -- /Note: this function is for internal use only/. -- -- @ -- consistent 'Algebra.Graph.AdjacencyMap.empty' == True -- consistent ('Algebra.Graph.AdjacencyMap.vertex' x) == True -- consistent ('Algebra.Graph.AdjacencyMap.overlay' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.connect' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.edge' x y) == True -- consistent ('Algebra.Graph.AdjacencyMap.edges' xs) == True -- consistent ('Algebra.Graph.AdjacencyMap.stars' xs) == True -- @ consistent :: Ord a => AdjacencyMap a -> Bool consistent (AM m) = referredToVertexSet m `Set.isSubsetOf` keysSet m -- | The list of edges of an adjacency map. -- /Note: this function is for internal use only/. internalEdgeList :: Map a (Set a) -> [(a, a)] internalEdgeList m = [ (x, y) | (x, ys) <- Map.toAscList m, y <- Set.toAscList ys ] -- | The set of vertices that are referred to by the edges of an adjacency map. -- /Note: this function is for internal use only/. referredToVertexSet :: Ord a => Map a (Set a) -> Set a referredToVertexSet = Set.fromList . uncurry (++) . unzip . internalEdgeList