----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.NonEmpty -- Copyright : (c) Andrey Mokhov 2016-2022 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the data type 'Graph' for algebraic graphs that are known -- to be non-empty at compile time. To avoid name clashes with "Algebra.Graph", -- this module can be imported qualified: -- -- @ -- import qualified Algebra.Graph.NonEmpty as NonEmpty -- @ -- -- The naming convention generally follows that of "Data.List.NonEmpty": we use -- suffix @1@ to indicate the functions whose interface must be changed compared -- to "Algebra.Graph", e.g. 'vertices1'. -- ----------------------------------------------------------------------------- module Algebra.Graph.NonEmpty ( -- * Non-empty algebraic graphs Graph (..), toNonEmpty, -- * Basic graph construction primitives vertex, edge, overlay, overlay1, connect, vertices1, edges1, overlays1, connects1, -- * Graph folding foldg1, -- * Relations on graphs isSubgraphOf, (===), -- * Graph properties size, hasVertex, hasEdge, vertexCount, edgeCount, vertexList1, edgeList, vertexSet, edgeSet, -- * Standard families of graphs path1, circuit1, clique1, biclique1, star, stars1, tree, mesh1, torus1, -- * Graph transformation removeVertex1, removeEdge, replaceVertex, mergeVertices, splitVertex1, transpose, induce1, induceJust1, simplify, sparsify, sparsifyKL, -- * Graph composition box ) where import Control.DeepSeq import Control.Monad import Control.Monad.Trans.State import Data.List.NonEmpty (NonEmpty (..)) import Data.String import Algebra.Graph.Internal import qualified Algebra.Graph as G import qualified Algebra.Graph.ToGraph as T import qualified Algebra.Graph.AdjacencyMap as AM import qualified Algebra.Graph.AdjacencyIntMap as AIM import qualified Data.Graph as KL import qualified Data.IntSet as IntSet import qualified Data.List.NonEmpty as NonEmpty import qualified Data.Set as Set import qualified Data.Tree as Tree import qualified GHC.Exts as Exts {-| Non-empty algebraic graphs, which are constructed using three primitives: 'vertex', 'overlay' and 'connect'. See module "Algebra.Graph" for algebraic graphs that can be empty. We define a 'Num' instance as a convenient notation for working with graphs: @ 0 == 'vertex' 0 1 + 2 == 'overlay' ('vertex' 1) ('vertex' 2) 1 * 2 == 'connect' ('vertex' 1) ('vertex' 2) 1 + 2 * 3 == 'overlay' ('vertex' 1) ('connect' ('vertex' 2) ('vertex' 3)) 1 * (2 + 3) == 'connect' ('vertex' 1) ('overlay' ('vertex' 2) ('vertex' 3)) @ __Note:__ the 'signum' method of the type class 'Num' cannot be implemented and will throw an error. Furthermore, the 'Num' instance does not satisfy several "customary laws" of 'Num', which dictate that 'fromInteger' @0@ and 'fromInteger' @1@ should act as additive and multiplicative identities, and 'negate' as additive inverse. Nevertheless, overloading 'fromInteger', '+' and '*' is very convenient when working with algebraic graphs; we hope that in future Haskell's Prelude will provide a more fine-grained class hierarchy for algebraic structures, which we would be able to utilise without violating any laws. The 'Eq' instance satisfies the following laws of non-empty algebraic graphs. * 'overlay' is commutative, associative and idempotent: > x + y == y + x > x + (y + z) == (x + y) + z > x + x == x * 'connect' is associative: > x * (y * z) == (x * y) * z * 'connect' distributes over 'overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'connect' can be decomposed: > x * y * z == x * y + x * z + y * z * 'connect' satisfies absorption and saturation: > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ will denote the number of vertices in the graph, /m/ will denote the number of edges in the graph, and /s/ will denote the /size/ of the corresponding 'Graph' expression, defined as the number of vertex leaves (note that /n/ <= /s/). If @g@ is a 'Graph', the corresponding /n/, /m/ and /s/ can be computed as follows: @n == 'vertexCount' g m == 'edgeCount' g s == 'size' g@ Converting a 'Graph' to the corresponding 'Algebra.Graph.NonEmpty.AdjacencyMap.AdjacencyMap' takes /O(s + m * log(m))/ time and /O(s + m)/ memory. This is also the complexity of the graph equality test, because it is currently implemented by converting graph expressions to canonical representations based on adjacency maps. The total order 'Ord' on graphs is defined using /size-lexicographic/ comparison: * Compare the number of vertices. In case of a tie, continue. * Compare the sets of vertices. In case of a tie, continue. * Compare the number of edges. In case of a tie, continue. * Compare the sets of edges. Here are a few examples: @'vertex' 1 < 'vertex' 2 'vertex' 3 < 'edge' 1 2 'vertex' 1 < 'edge' 1 1 'edge' 1 1 < 'edge' 1 2 'edge' 1 2 < 'edge' 1 1 + 'edge' 2 2 'edge' 1 2 < 'edge' 1 3@ Note that the resulting order refines the 'isSubgraphOf' relation and is compatible with 'overlay' and 'connect' operations: @'isSubgraphOf' x y ==> x <= y@ @x <= x + y x + y <= x * y@ -} data Graph a = Vertex a | Overlay (Graph a) (Graph a) | Connect (Graph a) (Graph a) deriving (Functor, Show) instance NFData a => NFData (Graph a) where rnf (Vertex x ) = rnf x rnf (Overlay x y) = rnf x `seq` rnf y rnf (Connect x y) = rnf x `seq` rnf y instance T.ToGraph (Graph a) where type ToVertex (Graph a) = a foldg _ = foldg1 hasEdge = hasEdge -- | __Note:__ this does not satisfy the usual ring laws; see 'Graph' for more -- details. instance Num a => Num (Graph a) where fromInteger = Vertex . fromInteger (+) = Overlay (*) = Connect signum = error "NonEmpty.Graph.signum cannot be implemented." abs = id negate = id instance IsString a => IsString (Graph a) where fromString = Vertex . fromString instance Ord a => Eq (Graph a) where (==) = eq instance Ord a => Ord (Graph a) where compare = ord -- | Defined via 'overlay'. instance Semigroup (Graph a) where (<>) = overlay -- TODO: Find a more efficient equality check. -- | Check if two graphs are equal by converting them to their adjacency maps. eq :: Ord a => Graph a -> Graph a -> Bool eq x y = T.toAdjacencyMap x == T.toAdjacencyMap y {-# NOINLINE [1] eq #-} {-# RULES "eqInt" eq = eqInt #-} -- Like @eq@ but specialised for graphs with vertices of type 'Int'. eqInt :: Graph Int -> Graph Int -> Bool eqInt x y = T.toAdjacencyIntMap x == T.toAdjacencyIntMap y -- TODO: Find a more efficient comparison. -- Compare two graphs by converting them to their adjacency maps. ord :: Ord a => Graph a -> Graph a -> Ordering ord x y = compare (T.toAdjacencyMap x) (T.toAdjacencyMap y) {-# NOINLINE [1] ord #-} {-# RULES "ordInt" ord = ordInt #-} -- Like @ord@ but specialised for graphs with vertices of type 'Int'. ordInt :: Graph Int -> Graph Int -> Ordering ordInt x y = compare (T.toAdjacencyIntMap x) (T.toAdjacencyIntMap y) instance Applicative Graph where pure = Vertex f <*> x = f >>= (<$> x) instance Monad Graph where return = pure g >>= f = foldg1 f Overlay Connect g -- | Convert an algebraic graph (from "Algebra.Graph") into a non-empty -- algebraic graph. Returns 'Nothing' if the argument is 'G.empty'. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- toNonEmpty 'G.empty' == Nothing -- toNonEmpty ('T.toGraph' x) == Just (x :: 'Graph' a) -- @ toNonEmpty :: G.Graph a -> Maybe (Graph a) toNonEmpty = G.foldg Nothing (Just . Vertex) (go Overlay) (go Connect) where go _ Nothing y = y go _ x Nothing = x go f (Just x) (Just y) = Just (f x y) -- | Construct the graph comprising /a single isolated vertex/. An alias for the -- constructor 'Vertex'. -- -- @ -- 'hasVertex' x (vertex y) == (x == y) -- 'vertexCount' (vertex x) == 1 -- 'edgeCount' (vertex x) == 0 -- 'size' (vertex x) == 1 -- @ vertex :: a -> Graph a vertex = Vertex {-# INLINE vertex #-} -- | Construct the graph comprising /a single edge/. -- -- @ -- edge x y == 'connect' ('vertex' x) ('vertex' y) -- 'hasEdge' x y (edge x y) == True -- 'edgeCount' (edge x y) == 1 -- 'vertexCount' (edge 1 1) == 1 -- 'vertexCount' (edge 1 2) == 2 -- @ edge :: a -> a -> Graph a edge u v = connect (vertex u) (vertex v) -- | /Overlay/ two graphs. An alias for the constructor 'Overlay'. This is a -- commutative, associative and idempotent operation. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. -- -- @ -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (overlay x y) >= 'vertexCount' x -- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (overlay x y) >= 'edgeCount' x -- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y -- 'size' (overlay x y) == 'size' x + 'size' y -- 'vertexCount' (overlay 1 2) == 2 -- 'edgeCount' (overlay 1 2) == 0 -- @ overlay :: Graph a -> Graph a -> Graph a overlay = Overlay {-# INLINE overlay #-} -- | Overlay a possibly empty graph (from "Algebra.Graph") with a non-empty -- graph. If the first argument is 'G.empty', the function returns the second -- argument; otherwise it is semantically the same as 'overlay'. -- Complexity: /O(s1)/ time and memory, and /O(s1 + s2)/ size. -- -- @ -- overlay1 'G.empty' x == x -- x /= 'G.empty' ==> overlay1 x y == overlay (fromJust $ toNonEmpty x) y -- @ overlay1 :: G.Graph a -> Graph a -> Graph a overlay1 = maybe id overlay . toNonEmpty -- | /Connect/ two graphs. An alias for the constructor 'Connect'. This is an -- associative operation, which distributes over 'overlay' and obeys the -- decomposition axiom. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. Note that the number -- of edges in the resulting graph is quadratic with respect to the number of -- vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (connect x y) >= 'vertexCount' x -- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (connect x y) >= 'edgeCount' x -- 'edgeCount' (connect x y) >= 'edgeCount' y -- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y -- 'size' (connect x y) == 'size' x + 'size' y -- 'vertexCount' (connect 1 2) == 2 -- 'edgeCount' (connect 1 2) == 1 -- @ connect :: Graph a -> Graph a -> Graph a connect = Connect {-# INLINE connect #-} -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- vertices1 [x] == 'vertex' x -- 'hasVertex' x . vertices1 == 'elem' x -- 'vertexCount' . vertices1 == 'length' . 'Data.List.NonEmpty.nub' -- 'vertexSet' . vertices1 == Set.'Set.fromList' . 'Data.List.NonEmpty.toList' -- @ vertices1 :: NonEmpty a -> Graph a vertices1 = overlays1 . fmap vertex {-# NOINLINE [1] vertices1 #-} -- | Construct the graph from a list of edges. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- edges1 [(x,y)] == 'edge' x y -- edges1 == 'overlays1' . 'fmap' ('uncurry' 'edge') -- 'edgeCount' . edges1 == 'Data.List.NonEmpty.length' . 'Data.List.NonEmpty.nub' -- @ edges1 :: NonEmpty (a, a) -> Graph a edges1 = overlays1 . fmap (uncurry edge) -- | Overlay a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- overlays1 [x] == x -- overlays1 [x,y] == 'overlay' x y -- @ overlays1 :: NonEmpty (Graph a) -> Graph a overlays1 = concatg1 overlay {-# INLINE [2] overlays1 #-} -- | Connect a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- connects1 [x] == x -- connects1 [x,y] == 'connect' x y -- @ connects1 :: NonEmpty (Graph a) -> Graph a connects1 = concatg1 connect {-# INLINE [2] connects1 #-} -- Auxiliary function, similar to 'sconcat'. concatg1 :: (Graph a -> Graph a -> Graph a) -> NonEmpty (Graph a) -> Graph a concatg1 combine (x :| xs) = maybe x (combine x) $ foldr1Safe combine xs -- | Generalised graph folding: recursively collapse a 'Graph' by -- applying the provided functions to the leaves and internal nodes of the -- expression. The order of arguments is: vertex, overlay and connect. -- Complexity: /O(s)/ applications of the given functions. As an example, the -- complexity of 'size' is /O(s)/, since 'const' and '+' have constant costs. -- -- @ -- foldg1 'vertex' 'overlay' 'connect' == id -- foldg1 'vertex' 'overlay' ('flip' 'connect') == 'transpose' -- foldg1 ('const' 1) (+) (+) == 'size' -- foldg1 (== x) (||) (||) == 'hasVertex' x -- @ foldg1 :: (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> Graph a -> b foldg1 v o c = go where go (Vertex x ) = v x go (Overlay x y) = o (go x) (go y) go (Connect x y) = c (go x) (go y) -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- isSubgraphOf x ('overlay' x y) == True -- isSubgraphOf ('overlay' x y) ('connect' x y) == True -- isSubgraphOf ('path1' xs) ('circuit1' xs) == True -- isSubgraphOf x y ==> x <= y -- @ isSubgraphOf :: Ord a => Graph a -> Graph a -> Bool isSubgraphOf x y = AM.isSubgraphOf (T.toAdjacencyMap x) (T.toAdjacencyMap y) {-# NOINLINE [1] isSubgraphOf #-} {-# RULES "isSubgraphOf/Int" isSubgraphOf = isSubgraphOfIntR #-} -- Like 'isSubgraphOf' but specialised for graphs with vertices of type 'Int'. isSubgraphOfIntR :: Graph Int -> Graph Int -> Bool isSubgraphOfIntR x y = AIM.isSubgraphOf (T.toAdjacencyIntMap x) (T.toAdjacencyIntMap y) -- | Structural equality on graph expressions. -- Complexity: /O(s)/ time. -- -- @ -- x === x == True -- x + y === x + y == True -- 1 + 2 === 2 + 1 == False -- x + y === x * y == False -- @ (===) :: Eq a => Graph a -> Graph a -> Bool (Vertex x1 ) === (Vertex x2 ) = x1 == x2 (Overlay x1 y1) === (Overlay x2 y2) = x1 === x2 && y1 === y2 (Connect x1 y1) === (Connect x2 y2) = x1 === x2 && y1 === y2 _ === _ = False {-# SPECIALISE (===) :: Graph Int -> Graph Int -> Bool #-} infix 4 === -- | The /size/ of a graph, i.e. the number of leaves of the expression. -- Complexity: /O(s)/ time. -- -- @ -- size ('vertex' x) == 1 -- size ('overlay' x y) == size x + size y -- size ('connect' x y) == size x + size y -- size x >= 1 -- size x >= 'vertexCount' x -- @ size :: Graph a -> Int size = foldg1 (const 1) (+) (+) -- | Check if a graph contains a given vertex. -- Complexity: /O(s)/ time. -- -- @ -- hasVertex x ('vertex' y) == (x == y) -- @ hasVertex :: Eq a => a -> Graph a -> Bool hasVertex v = foldg1 (==v) (||) (||) {-# SPECIALISE hasVertex :: Int -> Graph Int -> Bool #-} -- See the Note [The implementation of hasEdge] in "Algebra.Graph". -- | Check if a graph contains a given edge. -- Complexity: /O(s)/ time. -- -- @ -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' x y) == True -- hasEdge x y . 'removeEdge' x y == 'const' False -- hasEdge x y == 'elem' (x,y) . 'edgeList' -- @ hasEdge :: Eq a => a -> a -> Graph a -> Bool hasEdge s t g = foldg1 v o c g 0 == 2 where v x 0 = if x == s then 1 else 0 v x _ = if x == t then 2 else 1 o x y a = case x a of 0 -> y a 1 -> if y a == 2 then 2 else 1 _ -> 2 :: Int c x y a = case x a of { 2 -> 2; res -> y res } {-# SPECIALISE hasEdge :: Int -> Int -> Graph Int -> Bool #-} -- | The number of vertices in a graph. -- Complexity: /O(s * log(n))/ time. -- -- @ -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- vertexCount x \< vertexCount y ==> x \< y -- @ vertexCount :: Ord a => Graph a -> Int vertexCount = T.vertexCount {-# RULES "vertexCount/Int" vertexCount = vertexIntCount #-} {-# INLINE [1] vertexCount #-} -- Like 'vertexCount' but specialised for Graph with vertices of type 'Int'. vertexIntCount :: Graph Int -> Int vertexIntCount = IntSet.size . vertexIntSet -- | The number of edges in a graph. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' x y) == 1 -- edgeCount == 'length' . 'edgeList' -- @ edgeCount :: Ord a => Graph a -> Int edgeCount = T.edgeCount {-# INLINE [1] edgeCount #-} {-# RULES "edgeCount/Int" edgeCount = edgeCountInt #-} -- Like 'edgeCount' but specialised for graphs with vertices of type 'Int'. edgeCountInt :: Graph Int -> Int edgeCountInt = T.edgeCount . T.toAdjacencyIntMap -- | The sorted list of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexList1 ('vertex' x) == [x] -- vertexList1 . 'vertices1' == 'Data.List.NonEmpty.nub' . 'Data.List.NonEmpty.sort' -- @ vertexList1 :: Ord a => Graph a -> NonEmpty a vertexList1 = NonEmpty.fromList . Set.toAscList . vertexSet {-# RULES "vertexList1/Int" vertexList1 = vertexIntList1 #-} {-# INLINE [1] vertexList1 #-} -- | Like 'vertexList1' but specialised for Graph with vertices of type 'Int'. vertexIntList1 :: Graph Int -> NonEmpty Int vertexIntList1 = NonEmpty.fromList . IntSet.toAscList . vertexIntSet -- | The sorted list of edges of a graph. -- Complexity: /O(s + m * log(m))/ time and /O(m)/ memory. Note that the number of -- edges /m/ of a graph can be quadratic with respect to the expression size /s/. -- -- @ -- edgeList ('vertex' x) == [] -- edgeList ('edge' x y) == [(x,y)] -- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)] -- edgeList . 'edges1' == 'Data.List.nub' . 'Data.List.sort' . 'Data.List.NonEmpty.toList' -- edgeList . 'transpose' == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . edgeList -- @ edgeList :: Ord a => Graph a -> [(a, a)] edgeList = T.edgeList {-# RULES "edgeList/Int" edgeList = edgeIntList #-} {-# INLINE [1] edgeList #-} -- Like 'edgeList' but specialised for Graph with vertices of type 'Int'. edgeIntList :: Graph Int -> [(Int, Int)] edgeIntList = T.edgeList . T.toAdjacencyIntMap -- | The set of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices1' == Set.'Set.fromList' . 'Data.List.NonEmpty.toList' -- vertexSet . 'clique1' == Set.'Set.fromList' . 'Data.List.NonEmpty.toList' -- @ vertexSet :: Ord a => Graph a -> Set.Set a vertexSet = T.vertexSet -- Like 'vertexSet' but specialised for graphs with vertices of type 'Int'. vertexIntSet :: Graph Int -> IntSet.IntSet vertexIntSet = T.vertexIntSet -- | The set of edges of a given graph. -- Complexity: /O(s * log(m))/ time and /O(m)/ memory. -- -- @ -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y) -- edgeSet . 'edges1' == Set.'Set.fromList' . 'Data.List.NonEmpty.toList' -- @ edgeSet :: Ord a => Graph a -> Set.Set (a, a) edgeSet = T.edgeSet -- | The /path/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- path1 [x] == 'vertex' x -- path1 [x,y] == 'edge' x y -- path1 . 'Data.List.NonEmpty.reverse' == 'transpose' . path1 -- @ path1 :: NonEmpty a -> Graph a path1 (x :| [] ) = vertex x path1 (x :| (y:ys)) = edges1 ((x, y) :| zip (y:ys) ys) -- | The /circuit/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- circuit1 [x] == 'edge' x x -- circuit1 [x,y] == 'edges1' [(x,y), (y,x)] -- circuit1 . 'Data.List.NonEmpty.reverse' == 'transpose' . circuit1 -- @ circuit1 :: NonEmpty a -> Graph a circuit1 (x :| xs) = path1 (x :| xs ++ [x]) -- | The /clique/ on a list of vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- clique1 [x] == 'vertex' x -- clique1 [x,y] == 'edge' x y -- clique1 [x,y,z] == 'edges1' [(x,y), (x,z), (y,z)] -- clique1 (xs '<>' ys) == 'connect' (clique1 xs) (clique1 ys) -- clique1 . 'Data.List.NonEmpty.reverse' == 'transpose' . clique1 -- @ clique1 :: NonEmpty a -> Graph a clique1 = connects1 . fmap vertex {-# NOINLINE [1] clique1 #-} -- | The /biclique/ on two lists of vertices. -- Complexity: /O(L1 + L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- biclique1 [x1,x2] [y1,y2] == 'edges1' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)] -- biclique1 xs ys == 'connect' ('vertices1' xs) ('vertices1' ys) -- @ biclique1 :: NonEmpty a -> NonEmpty a -> Graph a biclique1 xs ys = connect (vertices1 xs) (vertices1 ys) -- | The /star/ formed by a centre vertex connected to a list of leaves. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- star x [] == 'vertex' x -- star x [y] == 'edge' x y -- star x [y,z] == 'edges1' [(x,y), (x,z)] -- @ star :: a -> [a] -> Graph a star x [] = vertex x star x (y:ys) = connect (vertex x) (vertices1 $ y :| ys) {-# INLINE star #-} -- | The /stars/ formed by overlaying a non-empty list of 'star's. -- Complexity: /O(L)/ time, memory and size, where /L/ is the total size of the -- input. -- -- @ -- stars1 [(x, [] )] == 'vertex' x -- stars1 [(x, [y])] == 'edge' x y -- stars1 [(x, ys )] == 'star' x ys -- stars1 == 'overlays1' . 'fmap' ('uncurry' 'star') -- 'overlay' (stars1 xs) (stars1 ys) == stars1 (xs '<>' ys) -- @ stars1 :: NonEmpty (a, [a]) -> Graph a stars1 = overlays1 . fmap (uncurry star) {-# INLINE stars1 #-} -- | The /tree graph/ constructed from a given 'Tree.Tree' data structure. -- Complexity: /O(T)/ time, memory and size, where /T/ is the size of the -- given tree (i.e. the number of vertices in the tree). -- -- @ -- tree (Node x []) == 'vertex' x -- tree (Node x [Node y [Node z []]]) == 'path1' [x,y,z] -- tree (Node x [Node y [], Node z []]) == 'star' x [y,z] -- tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges1' [(1,2), (1,3), (3,4), (3,5)] -- @ tree :: Tree.Tree a -> Graph a tree (Tree.Node x f) = overlays1 $ star x (map Tree.rootLabel f) :| map tree f -- | Construct a /mesh graph/ from two lists of vertices. -- Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- mesh1 [x] [y] == 'vertex' (x, y) -- mesh1 xs ys == 'box' ('path1' xs) ('path1' ys) -- mesh1 [1,2,3] [\'a\', \'b\'] == 'edges1' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')) -- , ((1,\'b\'),(2,\'b\')), ((2,\'a\'),(2,\'b\')) -- , ((2,\'a\'),(3,\'a\')), ((2,\'b\'),(3,\'b\')) -- , ((3,\'a\'),(3,\'b\')) ] -- @ mesh1 :: NonEmpty a -> NonEmpty b -> Graph (a, b) mesh1 (x :| []) ys = (x, ) <$> path1 ys mesh1 xs (y :| []) = (, y) <$> path1 xs mesh1 xs@(x1 :| x2 : xt) ys@(y1 :| y2 : yt) = let star i j o = (vertex i `overlay` vertex j) `connect` vertex o innerStars = overlays1 $ do (x1, x2) <- NonEmpty.zip xs (x2 :| xt) (y1, y2) <- NonEmpty.zip ys (y2 :| yt) return $ star (x1, y2) (x2, y1) (x2, y2) in ((x1, ) <$> path1 ys) `overlay` ((, y1) <$> path1 xs) `overlay` innerStars -- | Construct a /torus graph/ from two lists of vertices. -- Complexity: /O(L1 * L2)/ time, memory and size, where /L1/ and /L2/ are the -- lengths of the given lists. -- -- @ -- torus1 [x] [y] == 'edge' (x,y) (x,y) -- torus1 xs ys == 'box' ('circuit1' xs) ('circuit1' ys) -- torus1 [1,2] [\'a\', \'b\'] == 'edges1' [ ((1,\'a\'),(1,\'b\')), ((1,\'a\'),(2,\'a\')) -- , ((1,\'b\'),(1,\'a\')), ((1,\'b\'),(2,\'b\')) -- , ((2,\'a\'),(1,\'a\')), ((2,\'a\'),(2,\'b\')) -- , ((2,\'b\'),(1,\'b\')), ((2,\'b\'),(2,\'a\')) ] -- @ torus1 :: NonEmpty a -> NonEmpty b -> Graph (a, b) torus1 xs ys = stars1 $ do (x1, x2) <- pairs1 xs (y1, y2) <- pairs1 ys return ((x1, y1), [(x1, y2), (x2, y1)]) where -- Turn a non-empty list into a cycle and return pairs of neighbours pairs1 :: NonEmpty a -> NonEmpty (a, a) pairs1 as@(x :| xs) = NonEmpty.zip as $ maybe (x :| []) (`append1` [x]) (NonEmpty.nonEmpty xs) -- Append a list to a non-empty one append1 :: NonEmpty a -> [a] -> NonEmpty a append1 (x :| xs) ys = x :| (xs ++ ys) -- | Remove a vertex from a given graph. Returns @Nothing@ if the resulting -- graph is empty. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeVertex1 x ('vertex' x) == Nothing -- removeVertex1 1 ('vertex' 2) == Just ('vertex' 2) -- removeVertex1 x ('edge' x x) == Nothing -- removeVertex1 1 ('edge' 1 2) == Just ('vertex' 2) -- removeVertex1 x '>=>' removeVertex1 x == removeVertex1 x -- @ removeVertex1 :: Eq a => a -> Graph a -> Maybe (Graph a) removeVertex1 x = induce1 (/= x) {-# SPECIALISE removeVertex1 :: Int -> Graph Int -> Maybe (Graph Int) #-} -- | Remove an edge from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeEdge x y ('edge' x y) == 'vertices1' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- 'size' (removeEdge x y z) <= 3 * 'size' z -- @ removeEdge :: Eq a => a -> a -> Graph a -> Graph a removeEdge s t = filterContext s (/=s) (/=t) {-# SPECIALISE removeEdge :: Int -> Int -> Graph Int -> Graph Int #-} -- TODO: Export filterContext :: Eq a => a -> (a -> Bool) -> (a -> Bool) -> Graph a -> Graph a filterContext s i o g = maybe g go $ G.context (==s) (T.toGraph g) where go (G.Context is os) = G.induce (/=s) (T.toGraph g) `overlay1` transpose (star s (filter i is)) `overlay` star s (filter o os) {-# SPECIALISE filterContext :: Int -> (Int -> Bool) -> (Int -> Bool) -> Graph Int -> Graph Int #-} -- | The function 'replaceVertex' @x y@ replaces vertex @x@ with vertex @y@ in a -- given 'Graph'. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'mergeVertices' (== x) y -- @ replaceVertex :: Eq a => a -> a -> Graph a -> Graph a replaceVertex u v = fmap $ \w -> if w == u then v else w {-# SPECIALISE replaceVertex :: Int -> Int -> Graph Int -> Graph Int #-} -- | Merge vertices satisfying a given predicate into a given vertex. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- constant time. -- -- @ -- mergeVertices ('const' False) x == id -- mergeVertices (== x) y == 'replaceVertex' x y -- mergeVertices 'even' 1 (0 * 2) == 1 * 1 -- mergeVertices 'odd' 1 (3 + 4 * 5) == 4 * 1 -- @ mergeVertices :: (a -> Bool) -> a -> Graph a -> Graph a mergeVertices p v = fmap $ \w -> if p w then v else w -- | Split a vertex into a list of vertices with the same connectivity. -- Complexity: /O(s + k * L)/ time, memory and size, where /k/ is the number of -- occurrences of the vertex in the expression and /L/ is the length of the -- given list. -- -- @ -- splitVertex1 x [x] == id -- splitVertex1 x [y] == 'replaceVertex' x y -- splitVertex1 1 [0,1] $ 1 * (2 + 3) == (0 + 1) * (2 + 3) -- @ splitVertex1 :: Eq a => a -> NonEmpty a -> Graph a -> Graph a splitVertex1 v us g = g >>= \w -> if w == v then vertices1 us else vertex w {-# SPECIALISE splitVertex1 :: Int -> NonEmpty Int -> Graph Int -> Graph Int #-} -- | Transpose a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' x y) == 'edge' y x -- transpose . transpose == id -- transpose ('box' x y) == 'box' (transpose x) (transpose y) -- 'edgeList' . transpose == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . 'edgeList' -- @ transpose :: Graph a -> Graph a transpose = foldg1 vertex overlay (flip connect) {-# NOINLINE [1] transpose #-} {-# RULES "transpose/Vertex" forall x. transpose (Vertex x) = Vertex x "transpose/Overlay" forall g1 g2. transpose (Overlay g1 g2) = Overlay (transpose g1) (transpose g2) "transpose/Connect" forall g1 g2. transpose (Connect g1 g2) = Connect (transpose g2) (transpose g1) "transpose/overlays1" forall xs. transpose (overlays1 xs) = overlays1 (fmap transpose xs) "transpose/connects1" forall xs. transpose (connects1 xs) = connects1 (NonEmpty.reverse (fmap transpose xs)) "transpose/vertices1" forall xs. transpose (vertices1 xs) = vertices1 xs "transpose/clique1" forall xs. transpose (clique1 xs) = clique1 (NonEmpty.reverse xs) #-} -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. Returns @Nothing@ if the -- resulting graph is empty. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- constant time. -- -- @ -- induce1 ('const' True ) x == Just x -- induce1 ('const' False) x == Nothing -- induce1 (/= x) == 'removeVertex1' x -- induce1 p '>=>' induce1 q == induce1 (\\x -> p x && q x) -- @ induce1 :: (a -> Bool) -> Graph a -> Maybe (Graph a) induce1 p = induceJust1 . fmap (\a -> if p a then Just a else Nothing) -- | Construct the /induced subgraph/ of a given graph by removing the vertices -- that are 'Nothing'. Returns 'Nothing' if the resulting graph is empty. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- induceJust1 ('vertex' 'Nothing') == 'Nothing' -- induceJust1 ('edge' ('Just' x) 'Nothing') == 'Just' ('vertex' x) -- induceJust1 . 'fmap' 'Just' == 'Just' -- induceJust1 . 'fmap' (\\x -> if p x then 'Just' x else 'Nothing') == 'induce1' p -- @ induceJust1 :: Graph (Maybe a) -> Maybe (Graph a) induceJust1 = foldg1 (fmap Vertex) (k Overlay) (k Connect) where k _ Nothing a = a k _ a Nothing = a k f (Just a) (Just b) = Just (f a b) -- | Simplify a graph expression. Semantically, this is the identity function, -- but it simplifies a given expression according to the laws of the algebra. -- The function does not compute the simplest possible expression, -- but uses heuristics to obtain useful simplifications in reasonable time. -- Complexity: the function performs /O(s)/ graph comparisons. It is guaranteed -- that the size of the result does not exceed the size of the given expression. -- -- @ -- simplify == id -- 'size' (simplify x) <= 'size' x -- simplify 1 '===' 1 -- simplify (1 + 1) '===' 1 -- simplify (1 + 2 + 1) '===' 1 + 2 -- simplify (1 * 1 * 1) '===' 1 * 1 -- @ simplify :: Ord a => Graph a -> Graph a simplify = foldg1 Vertex (simple Overlay) (simple Connect) {-# SPECIALISE simplify :: Graph Int -> Graph Int #-} simple :: Eq g => (g -> g -> g) -> g -> g -> g simple op x y | x == z = x | y == z = y | otherwise = z where z = op x y {-# SPECIALISE simple :: (Graph Int -> Graph Int -> Graph Int) -> Graph Int -> Graph Int -> Graph Int #-} -- | Compute the /Cartesian product/ of graphs. -- Complexity: /O(s1 * s2)/ time, memory and size, where /s1/ and /s2/ are the -- sizes of the given graphs. -- -- @ -- box ('path1' [0,1]) ('path1' [\'a\',\'b\']) == 'edges1' [ ((0,\'a\'), (0,\'b\')) -- , ((0,\'a\'), (1,\'a\')) -- , ((0,\'b\'), (1,\'b\')) -- , ((1,\'a\'), (1,\'b\')) ] -- @ -- Up to isomorphism between the resulting vertex types, this operation is -- /commutative/, /associative/, /distributes/ over 'overlay', and has -- singleton graphs as /identities/. Below @~~@ stands for equality up to an -- isomorphism, e.g. @(x,@ @()) ~~ x@. -- -- @ -- box x y ~~ box y x -- box x (box y z) ~~ box (box x y) z -- box x ('overlay' y z) == 'overlay' (box x y) (box x z) -- box x ('vertex' ()) ~~ x -- 'transpose' (box x y) == box ('transpose' x) ('transpose' y) -- 'vertexCount' (box x y) == 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (box x y) <= 'vertexCount' x * 'edgeCount' y + 'edgeCount' x * 'vertexCount' y -- @ box :: Graph a -> Graph b -> Graph (a, b) box x y = overlay (fx <*> y) (fy <*> x) where fx = foldg1 (vertex . (,)) overlay overlay x fy = foldg1 (vertex . flip (,)) overlay overlay y -- | /Sparsify/ a graph by adding intermediate 'Left' @Int@ vertices between the -- original vertices (wrapping the latter in 'Right') such that the resulting -- graph is /sparse/, i.e. contains only /O(s)/ edges, but preserves the -- reachability relation between the original vertices. Sparsification is useful -- when working with dense graphs, as it can reduce the number of edges from -- /O(n^2)/ down to /O(n)/ by replacing cliques, bicliques and similar densely -- connected structures by sparse subgraphs built out of intermediate vertices. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- 'Data.List.sort' . 'Algebra.Graph.ToGraph.reachable' x == 'Data.List.sort' . 'Data.Either.rights' . 'Algebra.Graph.ToGraph.reachable' (sparsify x) . 'Data.Either.Right' -- 'vertexCount' (sparsify x) <= 'vertexCount' x + 'size' x + 1 -- 'edgeCount' (sparsify x) <= 3 * 'size' x -- 'size' (sparsify x) <= 3 * 'size' x -- @ sparsify :: Graph a -> Graph (Either Int a) sparsify graph = res where (res, end) = runState (foldg1 v o c graph 0 end) 1 v x s t = return $ clique1 (Left s :| [Right x, Left t]) o x y s t = overlay <$> s `x` t <*> s `y` t c x y s t = do m <- get put (m + 1) overlay <$> s `x` m <*> m `y` t -- | Sparsify a graph whose vertices are integers in the range @[1..n]@, where -- @n@ is the first argument of the function, producing an array-based graph -- representation from "Data.Graph" (introduced by King and Launchbury, hence -- the name of the function). In the resulting graph, vertices @[1..n]@ -- correspond to the original vertices, and all vertices greater than @n@ are -- introduced by the sparsification procedure. -- -- Complexity: /O(s)/ time and memory. Note that thanks to sparsification, the -- resulting graph has a linear number of edges with respect to the size of the -- original algebraic representation even though the latter can potentially -- contain a quadratic /O(s^2)/ number of edges. -- -- @ -- 'Data.List.sort' . 'Algebra.Graph.ToGraph.reachable' x == 'Data.List.sort' . 'filter' (<= n) . 'Data.Graph.reachable' (sparsifyKL n x) -- 'length' ('Data.Graph.vertices' $ sparsifyKL n x) <= 'vertexCount' x + 'size' x + 1 -- 'length' ('Data.Graph.edges' $ sparsifyKL n x) <= 3 * 'size' x -- @ sparsifyKL :: Int -> Graph Int -> KL.Graph sparsifyKL n graph = KL.buildG (1, next - 1) ((n + 1, n + 2) : Exts.toList (res :: List KL.Edge)) where (res, next) = runState (foldg1 v o c graph (n + 1) (n + 2)) (n + 3) v x s t = return $ Exts.fromList [(s,x), (x,t)] o x y s t = (<>) <$> s `x` t <*> s `y` t c x y s t = do m <- get put (m + 1) (\xs ys -> Exts.fromList [(s,m), (m,t)] <> xs <> ys) <$> s `x` m <*> m `y` t