/* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #include #include #include #include "argon2.h" #include "core.h" #include "blake2/blamka-round-ref.h" #include "blake2/blake2-impl.h" #include "blake2/blake2.h" /* * Function fills a new memory block and optionally XORs the old block over the new one. * @next_block must be initialized. * @param prev_block Pointer to the previous block * @param ref_block Pointer to the reference block * @param next_block Pointer to the block to be constructed * @param with_xor Whether to XOR into the new block (1) or just overwrite (0) * @pre all block pointers must be valid */ static void fill_block(const block *prev_block, const block *ref_block, block *next_block, int with_xor) { block blockR, block_tmp; unsigned i; copy_block(&blockR, ref_block); xor_block(&blockR, prev_block); copy_block(&block_tmp, &blockR); /* Now blockR = ref_block + prev_block and block_tmp = ref_block + prev_block */ if (with_xor) { /* Saving the next block contents for XOR over: */ xor_block(&block_tmp, next_block); /* Now blockR = ref_block + prev_block and block_tmp = ref_block + prev_block + next_block */ } /* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then (16,17,..31)... finally (112,113,...127) */ for (i = 0; i < 8; ++i) { BLAKE2_ROUND_NOMSG( blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2], blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5], blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8], blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11], blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14], blockR.v[16 * i + 15]); } /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */ for (i = 0; i < 8; i++) { BLAKE2_ROUND_NOMSG( blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16], blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33], blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64], blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81], blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112], blockR.v[2 * i + 113]); } copy_block(next_block, &block_tmp); xor_block(next_block, &blockR); } static void next_addresses(block *address_block, block *input_block, const block *zero_block) { input_block->v[6]++; fill_block(zero_block, input_block, address_block, 0); fill_block(zero_block, address_block, address_block, 0); } void fill_segment(const argon2_instance_t *instance, argon2_position_t position) { block *ref_block = NULL, *curr_block = NULL; block address_block, input_block, zero_block; uint64_t pseudo_rand, ref_index, ref_lane; uint32_t prev_offset, curr_offset; uint32_t starting_index; uint32_t i; int data_independent_addressing; if (instance == NULL) { return; } data_independent_addressing = (instance->type == Argon2_i) || (instance->type == Argon2_id && (position.pass == 0) && (position.slice < ARGON2_SYNC_POINTS / 2)); if (data_independent_addressing) { init_block_value(&zero_block, 0); init_block_value(&input_block, 0); input_block.v[0] = position.pass; input_block.v[1] = position.lane; input_block.v[2] = position.slice; input_block.v[3] = instance->memory_blocks; input_block.v[4] = instance->passes; input_block.v[5] = instance->type; } starting_index = 0; if ((0 == position.pass) && (0 == position.slice)) { starting_index = 2; /* we have already generated the first two blocks */ /* Don't forget to generate the first block of addresses: */ if (data_independent_addressing) { next_addresses(&address_block, &input_block, &zero_block); } } /* Offset of the current block */ curr_offset = position.lane * instance->lane_length + position.slice * instance->segment_length + starting_index; if (0 == curr_offset % instance->lane_length) { /* Last block in this lane */ prev_offset = curr_offset + instance->lane_length - 1; } else { /* Previous block */ prev_offset = curr_offset - 1; } for (i = starting_index; i < instance->segment_length; ++i, ++curr_offset, ++prev_offset) { /*1.1 Rotating prev_offset if needed */ if (curr_offset % instance->lane_length == 1) { prev_offset = curr_offset - 1; } /* 1.2 Computing the index of the reference block */ /* 1.2.1 Taking pseudo-random value from the previous block */ if (data_independent_addressing) { if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) { next_addresses(&address_block, &input_block, &zero_block); } pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK]; } else { pseudo_rand = instance->memory[prev_offset].v[0]; } /* 1.2.2 Computing the lane of the reference block */ ref_lane = ((pseudo_rand >> 32)) % instance->lanes; if ((position.pass == 0) && (position.slice == 0)) { /* Can not reference other lanes yet */ ref_lane = position.lane; } /* 1.2.3 Computing the number of possible reference block within the * lane. */ position.index = i; ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF, ref_lane == position.lane); /* 2 Creating a new block */ ref_block = instance->memory + instance->lane_length * ref_lane + ref_index; curr_block = instance->memory + curr_offset; if (ARGON2_VERSION_10 == instance->version) { /* version 1.2.1 and earlier: overwrite, not XOR */ fill_block(instance->memory + prev_offset, ref_block, curr_block, 0); } else { if(0 == position.pass) { fill_block(instance->memory + prev_offset, ref_block, curr_block, 0); } else { fill_block(instance->memory + prev_offset, ref_block, curr_block, 1); } } } }