-- | -- Module: Math.NumberTheory.Primes.Sieve.Eratosthenes -- Copyright: (c) 2011 Daniel Fischer -- Licence: MIT -- Maintainer: Daniel Fischer -- Stability: Provisional -- Portability: Non-portable (GHC extensions) -- -- Sieve -- {-# LANGUAGE CPP, BangPatterns #-} #if __GLASGOW_HASKELL__ >= 700 {-# OPTIONS_GHC -fspec-constr-count=6 #-} #endif {-# OPTIONS_HADDOCK hide #-} module Math.NumberTheory.Primes.Sieve.Eratosthenes ( primes , sieveFrom , psieveFrom , PrimeSieve(..) , psieveList , primeList , primeSieve , nthPrimeCt , countFromTo , countAll , countToNth , sieveBytes , sieveBits , sieveWords , sieveRange , sieveTo ) where #include "MachDeps.h" import Control.Monad.ST import Data.Array.Base (unsafeRead, unsafeWrite, unsafeAt, unsafeNewArray_) import Data.Array.ST import Data.Array.Unboxed import Control.Monad (when) import Data.Bits import Data.Word import Math.NumberTheory.Powers.Squares (integerSquareRoot) import Math.NumberTheory.Utils import Math.NumberTheory.Primes.Counting.Approximate import Math.NumberTheory.Primes.Sieve.Indexing -- Sieve in 128K chunks. -- Large enough to get something done per chunk -- and hopefully small enough to fit in the cache. sieveBytes :: Int sieveBytes = 128*1024 -- Number of bits per chunk. sieveBits :: Int sieveBits = 8*sieveBytes -- Last index of chunk. lastIndex :: Int lastIndex = sieveBits - 1 -- Range of a chunk. sieveRange :: Int sieveRange = 30*sieveBytes sieveWords :: Int sieveWords = sieveBytes `quot` SIZEOF_HSWORD #if SIZEOF_HSWORD == 8 type CacheWord = Word #define RMASK 63 #define WSHFT 6 #define TOPB 32 #define TOPM 0xFFFFFFFF #else type CacheWord = Word64 #define RMASK 31 #define WSHFT 5 #define TOPB 16 #define TOPM 0xFFFF #endif -- | Compact store of primality flags. data PrimeSieve = PS !Integer {-# UNPACK #-} !(UArray Int Bool) -- | Sieve primes up to (and including) a bound. -- For small enough bounds, this is more efficient than -- using the segmented sieve. -- -- Since arrays are 'Int'-indexed, overflow occurs when the sieve -- size comes near @'maxBound' :: 'Int'@, that corresponds to an -- upper bound near @15/8*'maxBound'@. On @32@-bit systems, that -- is often within memory limits, so don't give bounds larger than -- @8*10^9@ there. primeSieve :: Integer -> PrimeSieve primeSieve bound = PS 0 (runSTUArray $ sieveTo bound) -- | Generate a list of primes for consumption from a -- 'PrimeSieve'. primeList :: PrimeSieve -> [Integer] primeList (PS 0 bs) = 2:3:5:[toPrim i | let (lo,hi) = bounds bs , i <- [lo .. hi] , unsafeAt bs i ] primeList (PS vO bs) = [vO + toPrim i | let (lo,hi) = bounds bs , i <- [lo .. hi] , unsafeAt bs i ] -- | List of primes. -- Since the sieve uses unboxed arrays, overflow occurs at some point. -- On 64-bit systems, that point is beyond the memory limits, on -- 32-bit systems, it is at about @1.7*10^18@. primes :: [Integer] primes = 2:3:5:concat [[vO + toPrim i | i <- [0 .. li], unsafeAt bs i] | PS vO bs <- psieveList, let (_,li) = bounds bs] -- | List of primes in the form of a list of 'PrimeSieve's, more compact than -- 'primes', thus it may be better to use @'psieveList' >>= 'primeList'@ -- than keeping the list of primes alive during the entire run. psieveList :: [PrimeSieve] psieveList = makeSieves plim sqlim 0 0 cache where plim = 4801 -- prime #647, 644 of them to use sqlim = plim*plim cache = runSTUArray $ do sieve <- sieveTo 4801 new <- unsafeNewArray_ (0,1287) :: ST s (STUArray s Int CacheWord) let fill j indx | 1279 < indx = return new -- index of 4801 = 159*30 + 31 ~> 159*8+7 | otherwise = do p <- unsafeRead sieve indx if p then do let !i = indx .&. 7 k = indx `shiftR` 3 strt1 = (k*(30*k + 2*rho i) + byte i) `shiftL` 3 + fromIntegral (idx i) !strt = fromIntegral (strt1 .&. 0xFFFFF) !skip = fromIntegral (strt1 `shiftR` 20) !ixes = fromIntegral indx `shiftL` 23 + strt `shiftL` 3 + fromIntegral i unsafeWrite new j skip unsafeWrite new (j+1) ixes fill (j+2) (indx+1) else fill j (indx+1) fill 0 0 makeSieves :: Integer -> Integer -> Integer -> Integer -> UArray Int CacheWord -> [PrimeSieve] makeSieves plim sqlim bitOff valOff cache | valOff' < sqlim = let (nc, bs) = runST $ do cch <- unsafeThaw cache :: ST s (STUArray s Int CacheWord) bs0 <- slice cch fcch <- unsafeFreeze cch fbs0 <- unsafeFreeze bs0 return (fcch, fbs0) in PS valOff bs : makeSieves plim sqlim bitOff' valOff' nc | otherwise = let plim' = plim + 4800 sqlim' = plim' * plim' (nc,bs) = runST $ do cch <- growCache bitOff plim cache bs0 <- slice cch fcch <- unsafeFreeze cch fbs0 <- unsafeFreeze bs0 return (fcch, fbs0) in PS valOff bs : makeSieves plim' sqlim' bitOff' valOff' nc where valOff' = valOff + fromIntegral sieveRange bitOff' = bitOff + fromIntegral sieveBits slice :: STUArray s Int CacheWord -> ST s (STUArray s Int Bool) slice cache = do hi <- snd `fmap` getBounds cache sieve <- newArray (0,lastIndex) True let treat pr | hi < pr = return sieve | otherwise = do w <- unsafeRead cache pr if w /= 0 then unsafeWrite cache pr (w-1) else do ixes <- unsafeRead cache (pr+1) let !stj = fromIntegral ixes .&. 0x7FFFFF -- position of multiple and index of cofactor !ixw = fromIntegral (ixes `shiftR` 23) -- prime data, up to 41 bits !i = ixw .&. 7 !k = ixw - i -- On 32-bits, k > 44717396 means overflow is possible in tick !o = i `shiftL` 3 !j = stj .&. 7 -- index of cofactor !s = stj `shiftR` 3 -- index of first multiple to tick off (n, u) <- tick k o j s let !skip = fromIntegral (n `shiftR` 20) !strt = fromIntegral (n .&. 0xFFFFF) unsafeWrite cache pr skip unsafeWrite cache (pr+1) ((ixes .&. complement 0x7FFFFF) .|. strt `shiftL` 3 .|. fromIntegral u) treat (pr+2) tick stp off j ix | lastIndex < ix = return (ix - sieveBits, j) | otherwise = do p <- unsafeRead sieve ix when p (unsafeWrite sieve ix False) tick stp off ((j+1) .&. 7) (ix + stp*delta j + tau (off+j)) treat 0 -- | Sieve up to bound in one go. sieveTo :: Integer -> ST s (STUArray s Int Bool) sieveTo bound = arr where (bytes,lidx) = idxPr bound !mxidx = 8*bytes+lidx mxval :: Integer mxval = 30*fromIntegral bytes + fromIntegral (rho lidx) !mxsve = integerSquareRoot mxval (kr,r) = idxPr mxsve !svbd = 8*kr+r arr = do ar <- newArray (0,mxidx) True let start k i = 8*(k*(30*k+2*rho i) + byte i) + idx i tick stp off j ix | mxidx < ix = return () | otherwise = do p <- unsafeRead ar ix when p (unsafeWrite ar ix False) tick stp off ((j+1) .&. 7) (ix + stp*delta j + tau (off+j)) sift ix | svbd < ix = return ar | otherwise = do p <- unsafeRead ar ix when p (do let i = ix .&. 7 k = ix `shiftR` 3 !off = i `shiftL` 3 !stp = ix - i tick stp off i (start k i)) sift (ix+1) sift 0 growCache :: Integer -> Integer -> UArray Int CacheWord -> ST s (STUArray s Int CacheWord) growCache offset plim old = do let (_,num) = bounds old (bt,ix) = idxPr plim !start = 8*bt+ix+1 !nlim = plim+4800 sieve <- sieveTo nlim -- Implement SieveFromTo for this, it's pretty wasteful when nlim isn't (_,hi) <- getBounds sieve -- very small anymore more <- countFromToWd start hi sieve new <- unsafeNewArray_ (0,num+2*more) :: ST s (STUArray s Int CacheWord) let copy i | num < i = return () | otherwise = do unsafeWrite new i (old `unsafeAt` i) copy (i+1) copy 0 let fill j indx | hi < indx = return new | otherwise = do p <- unsafeRead sieve indx if p then do let !i = indx .&. 7 k :: Integer k = fromIntegral (indx `shiftR` 3) strt0 = ((k*(30*k + fromIntegral (2*rho i)) + fromIntegral (byte i)) `shiftL` 3) + fromIntegral (idx i) strt1 = strt0 - offset !strt = fromIntegral strt1 .&. 0xFFFFF !skip = fromIntegral (strt1 `shiftR` 20) !ixes = fromIntegral indx `shiftL` 23 .|. strt `shiftL` 3 .|. fromIntegral i unsafeWrite new j skip unsafeWrite new (j+1) ixes fill (j+2) (indx+1) else fill j (indx+1) fill (num+1) start -- Danger: relies on start and end being the first resp. last -- index in a Word -- Do not use except in growCache and psieveFrom {-# INLINE countFromToWd #-} countFromToWd :: Int -> Int -> STUArray s Int Bool -> ST s Int countFromToWd start end ba = do wa <- (castSTUArray :: STUArray s Int Bool -> ST s (STUArray s Int Word)) ba let !sb = start `shiftR` WSHFT !eb = end `shiftR` WSHFT count !acc i | eb < i = return acc | otherwise = do w <- unsafeRead wa i count (acc + bitCountWord w) (i+1) count 0 sb -- count set bits between two indices (inclusive) -- start and end must both be valid indices and start <= end countFromTo :: Int -> Int -> STUArray s Int Bool -> ST s Int countFromTo start end ba = do wa <- (castSTUArray :: STUArray s Int Bool -> ST s (STUArray s Int Word)) ba let !sb = start `shiftR` WSHFT !si = start .&. RMASK !eb = end `shiftR` WSHFT !ei = end .&. RMASK count !acc i | i == eb = do w <- unsafeRead wa i return (acc + bitCountWord (w `shiftL` (RMASK - ei))) | otherwise = do w <- unsafeRead wa i count (acc + bitCountWord w) (i+1) if sb < eb then do w <- unsafeRead wa sb count (bitCountWord (w `shiftR` si)) (sb+1) else do w <- unsafeRead wa sb let !w1 = w `shiftR` si return (bitCountWord (w1 `shiftL` (RMASK - ei + si))) -- | @'sieveFrom' n@ creates the list of primes not less than @n@. sieveFrom :: Integer -> [Integer] sieveFrom n = case psieveFrom n of ps -> dropWhile (< n) (ps >>= primeList) -- | @'psieveFrom' n@ creates the list of 'PrimeSieve's starting roughly -- at @n@. Due to the organisation of the sieve, the list may contain -- a few primes less than @n@. -- This form uses less memory than @['Integer']@, hence it may be preferable -- to use this if it is to be reused. psieveFrom :: Integer -> [PrimeSieve] psieveFrom n = makeSieves plim sqlim bitOff valOff cache where k0 = max 0 (n-7) `quot` 30 valOff = 30*k0 bitOff = 8*k0 start = valOff+7 ssr = integerSquareRoot (start-1) + 1 end1 = start - 6 + fromIntegral sieveRange plim0 = integerSquareRoot end1 plim = plim0 + 4801 - (plim0 `rem` 4800) sqlim = plim*plim cache = runSTUArray $ do sieve <- sieveTo plim (lo,hi) <- getBounds sieve pct <- countFromToWd lo hi sieve new <- unsafeNewArray_ (0,2*pct-1) :: ST s (STUArray s Int CacheWord) let fill j indx | hi < indx = return new | otherwise = do isPr <- unsafeRead sieve indx if isPr then do let !i = indx .&. 7 !moff = i `shiftL` 3 k :: Integer k = fromIntegral (indx `shiftR` 3) p = 30*k+fromIntegral (rho i) q0 = (start-1) `quot` p (skp0,q1) = q0 `quotRem` fromIntegral sieveRange (b0,r0) = idxPr (fromIntegral q1 :: Int) (b1,r1) | r0 == 7 = (b0+1,0) | otherwise = (b0,r0+1) b2 = skp0*fromIntegral sieveBytes + fromIntegral b1 strt0 = ((k*(30*b2 + fromIntegral (rho r1)) + b2 * fromIntegral (rho i) + fromIntegral (mu (moff + r1))) `shiftL` 3) + fromIntegral (nu (moff + r1)) strt1 = ((k*(30*k + fromIntegral (2*rho i)) + fromIntegral (byte i)) `shiftL` 3) + fromIntegral (idx i) (strt2,r2) | p < ssr = (strt0 - bitOff,r1) | otherwise = (strt1 - bitOff, i) !strt = fromIntegral strt2 .&. 0xFFFFF !skip = fromIntegral (strt2 `shiftR` 20) !ixes = fromIntegral indx `shiftL` 23 .|. strt `shiftL` 3 .|. fromIntegral r2 unsafeWrite new j skip unsafeWrite new (j+1) ixes fill (j+2) (indx+1) else fill j (indx+1) fill 0 0 -- prime counting nthPrimeCt :: Integer -> Integer nthPrimeCt 1 = 2 nthPrimeCt 2 = 3 nthPrimeCt 3 = 5 nthPrimeCt 4 = 7 nthPrimeCt 5 = 11 nthPrimeCt 6 = 13 nthPrimeCt n | n < 1 = error "nthPrimeCt: negative argument" | n < 200000 = let bd0 = nthPrimeApprox n bnd = bd0 + bd0 `quot` 32 + 37 !sv = primeSieve bnd in countToNth (n-3) [sv] | otherwise = countToNth (n-3) (psieveList) -- find the n-th set bit in a list of PrimeSieves, -- aka find the (n+3)-rd prime countToNth :: Integer -> [PrimeSieve] -> Integer countToNth !n ps = runST (countDown n ps) countDown :: Integer -> [PrimeSieve] -> ST s Integer countDown !n (ps@(PS v0 bs) : more) | n > 278734 || (v0 /= 0 && n > 253000) = do ct <- countAll ps countDown (n - fromIntegral ct) more | otherwise = do stu <- unsafeThaw bs wa <- (castSTUArray :: STUArray s Int Bool -> ST s (STUArray s Int Word)) stu let go !k i | i == sieveWords = countDown k more | otherwise = do w <- unsafeRead wa i let !bc = fromIntegral $ bitCountWord w if bc < k then go (k-bc) (i+1) else let !j = fromIntegral (bc - k) !px = top w j (fromIntegral bc) in return (v0 + toPrim (px+(i `shiftL` WSHFT))) go n 0 countDown _ [] = error "Prime stream ended prematurely" -- count all set bits in a chunk, do it wordwise for speed. countAll :: PrimeSieve -> ST s Int countAll (PS _ bs) = do stu <- unsafeThaw bs wa <- (castSTUArray :: STUArray s Int Bool -> ST s (STUArray s Int Word)) stu let go !ct i | i == sieveWords = return ct | otherwise = do w <- unsafeRead wa i go (ct + bitCountWord w) (i+1) go 0 0 -- Find the j-th highest of bc set bits in the Word w. top :: Word -> Int -> Int -> Int top w j bc = go 0 TOPB TOPM bn w where !bn = bc-j go !_ _ !_ !_ 0 = error "Too few bits set" go bs 0 _ _ wd = if wd .&. 1 == 0 then error "Too few bits, shift 0" else bs go bs a msk ix wd = case bitCountWord (wd .&. msk) of lc | lc < ix -> go (bs+a) a msk (ix-lc) (wd `uncheckedShiftR` a) | otherwise -> let !na = a `shiftR` 1 in go bs na (msk `uncheckedShiftR` na) ix wd