-- |
-- Module:      Math.NumberTheory.MoebiusInversion
-- Copyright:   (c) 2012 Daniel Fischer
-- Licence:     MIT
-- Maintainer:  Daniel Fischer <daniel.is.fischer@googlemail.com>
-- Stability:   Provisional
-- Portability: Non-portable (GHC extensions)
--
-- Generalised Moebius inversion for 'Int' valued functions.
--
{-# LANGUAGE BangPatterns #-}
module Math.NumberTheory.MoebiusInversion.Int
    ( generalInversion
    , totientSum
    ) where

import Data.Array.ST
import Data.Array.Base
import Control.Monad.ST

import Math.NumberTheory.Powers.Squares


-- | @totientSum n@ is, for @n > 0@, the sum of @[totient k | k <- [1 .. n]]@,
--   computed via generalised Moebius inversion.
--   Arguments less than 1 cause an error to be raised.
totientSum :: Int -> Int
totientSum = (+1) . generalInversion triangle
  where
    triangle n = (n*(n-1)) `quot` 2

-- | @generalInversion g n@ evaluates the generalised Moebius inversion of @g@
--   at the argument @n@.
--
--   The generalised Moebius inversion implemented here allows an efficient
--   calculation of isolated values of the function @f : N -> Z@ if the function
--   @g@ defined by
--
-- >
-- > g n = sum [f (n `quot` k) | k <- [1 .. n]]
-- >
--
--   can be cheaply computed. By the generalised Moebius inversion formula, then
--
-- >
-- > f n = sum [moebius k * g (n `quot` k) | k <- [1 .. n]]
-- >
--
--   which allows the computation in /O/(n) steps, if the values of the
--   Moebius function are known. A slightly different formula, used here,
--   does not need the values of the Moebius function and allows the
--   computation in /O/(n^0.75) steps, using /O/(n^0.5) memory.
--
--   An example of a pair of such functions where the inversion allows a
--   more efficient computation than the direct approach is
--
-- >
-- > f n = number of reduced proper fractions with denominator <= n
-- > g n = number of proper fractions with denominator <= n
-- >
--
--   (a /proper fraction/ is a fraction @0 < n/d < 1@). Then @f n@ is the
--   cardinality of the Farey sequence of order @n@ (minus 1 or 2 if 0 and/or
--   1 are included in the Farey sequence), or the sum of the totients of
--   the numbers @2 <= k <= n@. @f n@ is not easily directly computable,
--   but then @g n = n*(n-1)/2@ is very easy to compute, and hence the inversion
--   gives an efficient method of computing @f n@.
--
--   For 'Int' valued functions, unboxed arrays can be used for greater efficiency.
--   That bears the risk of overflow, however, so be sure to use it only when it's
--   safe.
--
--   The value @f n@ is then computed by @generalInversion g n@). Note that when
--   many values of @f@ are needed, there are far more efficient methods, this
--   method is only appropriate to compute isolated values of @f@.
generalInversion :: (Int -> Int) -> Int -> Int
generalInversion fun n
    | n == 1    = fun 1
    | n == 2    = fun 2 - fun 1
    | n == 3    = fun 3 - 2*fun 1
    | otherwise = fastInvert fun n

fastInvert :: (Int -> Int) -> Int -> Int
fastInvert fun n = big `unsafeAt` 0
  where
    !k0 = integerSquareRoot (n `quot` 2)
    !mk0 = n `quot` (2*k0+1)
    kmax a m = (a `quot` m - 1) `quot` 2
    big = runSTUArray $ do
        small <- newArray_ (0,mk0) :: ST s (STUArray s Int Int)
        unsafeWrite small 0 0
        unsafeWrite small 1 (fun 1)
        unsafeWrite small 2 (fun 2 - fun 1)
        let calcit switch change i
                | mk0 < i   = return (switch,change)
                | i == change = calcit (switch+1) (change + 4*switch+6) i
                | otherwise = do
                    let mloop !acc k !m
                            | k < switch    = kloop acc k
                            | otherwise     = do
                                val <- unsafeRead small m
                                let nxtk = kmax i (m+1)
                                mloop (acc - (k-nxtk)*val) nxtk (m+1)
                        kloop !acc k
                            | k == 0    = do
                                unsafeWrite small i acc
                                calcit switch change (i+1)
                            | otherwise = do
                                val <- unsafeRead small (i `quot` (2*k+1))
                                kloop (acc-val) (k-1)
                    mloop (fun i - fun (i `quot` 2)) ((i-1) `quot` 2) 1
        (sw, ch) <- calcit 1 8 3
        large <- newArray_ (0,k0-1)
        let calcbig switch change j
                | j == 0    = return large
                | (2*j-1)*change <= n   = calcbig (switch+1) (change + 4*switch+6) j
                | otherwise = do
                    let i = n `quot` (2*j-1)
                        mloop !acc k m
                            | k < switch    = kloop acc k
                            | otherwise     = do
                                val <- unsafeRead small m
                                let nxtk = kmax i (m+1)
                                mloop (acc - (k-nxtk)*val) nxtk (m+1)
                        kloop !acc k
                            | k == 0    = do
                                unsafeWrite large (j-1) acc
                                calcbig switch change (j-1)
                            | otherwise = do
                                let m = i `quot` (2*k+1)
                                val <- if m <= mk0
                                         then unsafeRead small m
                                         else unsafeRead large (k*(2*j-1)+j-1)
                                kloop (acc-val) (k-1)
                    mloop (fun i - fun (i `quot` 2)) ((i-1) `quot` 2) 1
        calcbig sw ch k0