-- | -- Module: Math.NumberTheory.Primes.Testing.Probabilistic -- Copyright: (c) 2011 Daniel Fischer -- Licence: MIT -- Maintainer: Daniel Fischer <daniel.is.fischer@googlemail.com> -- Stability: Provisional -- Portability: Non-portable (GHC extensions) -- -- Probabilistic primality tests, Miller-Rabin and Baillie-PSW. {-# LANGUAGE CPP, MagicHash, BangPatterns #-} {-# OPTIONS_HADDOCK hide #-} module Math.NumberTheory.Primes.Testing.Probabilistic ( isPrime , millerRabinV , bailliePSW , isStrongFermatPP , isFermatPP , lucasTest ) where #include "MachDeps.h" import Math.NumberTheory.Moduli import Math.NumberTheory.Utils import Math.NumberTheory.Powers.Squares import Data.Bits import GHC.Base #if __GLASGOW_HASKELL__ < 705 import GHC.Word -- Moved to GHC.Types #endif import GHC.Integer.GMP.Internals -- | @'isPrime' n@ tests whether @n@ is a prime (negative or positive). -- First, trial division by the primes less than @1200@ is performed. -- If that hasn't determined primality or compositeness, a Baillie PSW -- test is performed. -- -- Since the Baillie PSW test may not be perfect, it is possible that -- some large composites are wrongly deemed prime, however, no composites -- passing the test are known and none exist below @2^64@. isPrime :: Integer -> Bool isPrime n | n < 0 = isPrime (-n) | n < 2 = False | n < 4 = True | otherwise = go smallPrimes where go (p:ps) | p*p > n = True | otherwise = case n `rem` p of 0 -> False _ -> go ps go [] = bailliePSW n -- | A Miller-Rabin like probabilistic primality test with preceding -- trial division. While the classic Miller-Rabin test uses -- randomly chosen bases, @'millerRabinV' k n@ uses the @k@ -- smallest primes as bases if trial division has not reached -- a conclusive result. (Only the primes up to @1200@ are -- available in this module, so the maximal effective @k@ is @196@.) millerRabinV :: Int -> Integer -> Bool millerRabinV k n | n < 0 = millerRabinV k (-n) | n < 2 = False | n < 4 = True | otherwise = go smallPrimes where go (p:ps) | p*p > n = True | otherwise = (n `rem` p /= 0) && go ps go [] = all (isStrongFermatPP n) (take k smallPrimes) -- | @'isStrongFermatPP' n b@ tests whether @n@ is a strong Fermat -- probable prime for base @b@, where @n > 2@ and @1 < b < n@. -- The conditions on the arguments are not checked. -- -- Apart from primes, also some composite numbers have the tested -- property, but those are rare. Very rare are composite numbers -- having the property for many bases, so testing a large prime -- candidate with several bases can identify composite numbers -- with high probability. An odd number @n > 3@ is prime if and -- only if @'isStrongFermatPP' n b@ holds for all @b@ with -- @2 <= b <= (n-1)/2@, but of course checking all those bases -- would be less efficient than trial division, so one normally -- checks only a relatively small number of bases, depending on -- the desired degree of certainty. The probability that a randomly -- chosen base doesn't identify a composite number @n@ is less than -- @1/4@, so five to ten tests give a reasonable level of certainty -- in general. -- -- Some notes about the choice of bases: @b@ is a strong Fermat base -- for @n@ if and only if @n-b@ is, hence one needs only test @b <= (n-1)/2@. -- If @b@ is a strong Fermat base for @n@, then so is @b^k `mod` n@ for -- all @k > 1@, hence one needs not test perfect powers, since their -- base yields a stronger condition. Finally, if @a@ and @b@ are strong -- Fermat bases for @n@, then @a*b@ is in most cases a strong Fermat -- base for @n@, it can only fail to be so if @n `mod` 4 == 1@ and -- the strong Fermat condition is reached at the same step for @a@ as for @b@, -- so primes are the most powerful bases to test. isStrongFermatPP :: Integer -> Integer -> Bool isStrongFermatPP n b = a == 1 || go t a where m = n-1 (t,u) = shiftToOddCount m a = powerModInteger' b u n go 0 _ = False go k x = x == m || go (k-1) ((x*x) `rem` n) -- | @'isFermatPP' n b@ tests whether @n@ is a Fermat probable prime -- for the base @b@, that is, whether @b^(n-1) `mod` n == 1@. -- This is a weaker but simpler condition. However, more is lost -- in strength than is gained in simplicity, so for primality testing, -- the strong check should be used. The remarks about -- the choice of bases to test from @'isStrongFermatPP'@ apply -- with the modification that if @a@ and @b@ are Fermat bases -- for @n@, then @a*b@ /always/ is a Fermat base for @n@ too. -- A /Charmichael number/ is a composite number @n@ which is a -- Fermat probable prime for all bases @b@ coprime to @n@. By the -- above, only primes @p <= n/2@ not dividing @n@ need to be tested -- to identify Carmichael numbers (however, testing all those -- primes would be less efficient than determining Carmichaelness -- from the prime factorisation; but testing an appropriate number -- of prime bases is reasonable to find out whether it's worth the -- effort to undertake the prime factorisation). isFermatPP :: Integer -> Integer -> Bool isFermatPP n b = powerModInteger' b (n-1) n == 1 -- | Primality test after Baillie, Pomerance, Selfridge and Wagstaff. -- The Baillie PSW test consists of a strong Fermat probable primality -- test followed by a (strong) Lucas primality test. This implementation -- assumes that the number @n@ to test is odd and larger than @3@. -- Even and small numbers have to be handled before. Also, before -- applying this test, trial division by small primes should be performed -- to identify many composites cheaply (although the Baillie PSW test is -- rather fast, about the same speed as a strong Fermat test for four or -- five bases usually, it is, for large numbers, much more costly than -- trial division by small primes, the primes less than @1000@, say, so -- eliminating numbers with small prime factors beforehand is more efficient). -- -- The Baillie PSW test is very reliable, so far no composite numbers -- passing it are known, and it is known (Gilchrist 2010) that no -- Baillie PSW pseudoprimes exist below @2^64@. However, a heuristic argument -- by Pomerance indicates that there are likely infinitely many Baillie PSW -- pseudoprimes. On the other hand, according to -- <http://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html> there is -- reason to believe that there are none with less than several -- thousand digits, so that for most use cases the test can be -- considered definitive. bailliePSW :: Integer -> Bool bailliePSW n = isStrongFermatPP n 2 && lucasTest n -- precondition: n odd, > 3 (no small prime factors, typically large) -- | The Lucas-Selfridge test, including square-check, but without -- the Fermat test. For package-internal use only. lucasTest :: Integer -> Bool lucasTest n | square || d == 0 = False | d == 1 = True | otherwise = uo == 0 || go t vo qo where square = isPossibleSquare2 n && r*r == n r = integerSquareRoot n d = find True 5 find !pos cd = case jacobi' (n `rem` cd) cd of 0 -> if cd == n then 1 else 0 1 -> find (not pos) (cd+2) _ -> if pos then cd else (-cd) q = (1-d) `quot` 4 (t,o) = shiftToOddCount (n+1) (uo, vo, qo) = testLucas n q o go 0 _ _ = False go s vn qn = vn == 0 || go (s-1) ((vn*vn-2*qn) `rem` n) ((qn*qn) `rem` n) -- n odd positive, n > abs q, index odd testLucas :: Integer -> Integer -> Integer -> (Integer, Integer, Integer) testLucas n q (S# i#) = look (WORD_SIZE_IN_BITS - 2) where j = I# i# look k | testBit j k = go (k-1) 1 1 1 q | otherwise = look (k-1) go k un un1 vn qn | k < 0 = (un, vn, qn) | testBit j k = go (k-1) u2n1 u2n2 v2n1 q2n1 | otherwise = go (k-1) u2n u2n1 v2n q2n where u2n = (un*vn) `rem` n u2n1 = (un1*vn-qn) `rem` n u2n2 = ((un1-q*un)*vn-qn) `rem` n v2n = (vn*vn-2*qn) `rem` n v2n1 = ((un1 - (2*q)*un)*vn-qn) `rem` n q2n = (qn*qn) `rem` n q2n1 = (qn*qn*q) `rem` n #if __GLASGOW_HASKELL__ < 709 testLucas n q (J# s# ba#) = test (s# -# 1#) where test j# = case indexWordArray# ba# j# of #else testLucas n q (Jp# bn#) = test (s# -# 1#) where s# = sizeofBigNat# bn# test j# = case indexBigNat# bn# j# of #endif 0## -> test (j# -# 1#) w# -> look (j# -# 1#) (W# w#) (WORD_SIZE_IN_BITS - 1) look j# w i | testBit w i = go j# w (i - 1) 1 1 1 q | otherwise = look j# w (i-1) go k# w i un un1 vn qn | i < 0 = if isTrue# (k# <# 0#) then (un,vn,qn) #if __GLASGOW_HASKELL__ < 709 else go (k# -# 1#) (W# (indexWordArray# ba# k#)) (WORD_SIZE_IN_BITS - 1) un un1 vn qn #else else go (k# -# 1#) (W# (indexBigNat# bn# k#)) (WORD_SIZE_IN_BITS - 1) un un1 vn qn #endif | testBit w i = go k# w (i-1) u2n1 u2n2 v2n1 q2n1 | otherwise = go k# w (i-1) u2n u2n1 v2n q2n where u2n = (un*vn) `rem` n u2n1 = (un1*vn-qn) `rem` n u2n2 = ((un1-q*un)*vn-qn) `rem` n v2n = (vn*vn-2*qn) `rem` n v2n1 = ((un1 - (2*q)*un)*vn-qn) `rem` n q2n = (qn*qn) `rem` n q2n1 = (qn*qn*q) `rem` n #if __GLASGOW_HASKELL__ >= 709 -- Listed as a precondition of lucasTest testLucas _ _ _ = error "lucasTest: negative argument" #endif smallPrimes :: [Integer] smallPrimes = 2:3:5:prs where prs = 7:11:filter isPr (takeWhile (< 1200) . scanl (+) 13 $ cycle [4,2,4,6,2,6,4,2]) isPr n = td n prs td n (p:ps) = (p*p > n) || (n `rem` p /= 0 && td n ps) td _ [] = True