module Language.Atom.Elaboration ( -- * Atom monad and container. Atom , AtomDB (..) , Global (..) , Rule (..) , StateHierarchy (..) , buildAtom -- * Type Aliases and Utilities , UID , Name , Path , elaborate , var , var' , array , array' , addName , get , put , allUVs , allUEs ) where import Control.Monad.Trans import Data.Function (on) import Data.List import Language.Atom.Expressions type UID = Int -- | A name. type Name = String -- | A hierarchical name. type Path = [Name] data Global = Global { gRuleId :: Int , gVarId :: Int , gArrayId :: Int , gState :: [StateHierarchy] , gProbes :: [(String, UE)] , gPeriod :: Int , gPhase :: Int } data AtomDB = AtomDB { atomId :: Int , atomName :: Name , atomNames :: [Name] -- Names used at this level. , atomEnable :: UE -- Enabling condition. , atomSubs :: [AtomDB] -- Sub atoms. , atomPeriod :: Int , atomPhase :: Int , atomAssigns :: [(UV, UE)] , atomActions :: [([String] -> String, [UE])] , atomAsserts :: [(Name, UE)] , atomCovers :: [(Name, UE)] } data Rule = Rule { ruleId :: Int , ruleName :: Name , ruleEnable :: UE , ruleAssigns :: [(UV, UE)] , ruleActions :: [([String] -> String, [UE])] , rulePeriod :: Int , rulePhase :: Int } | Assert { ruleName :: Name , ruleEnable :: UE , ruleAssert :: UE } | Cover { ruleName :: Name , ruleEnable :: UE , ruleCover :: UE } data StateHierarchy = StateHierarchy Name [StateHierarchy] | StateVariable Name Const | StateArray Name [Const] instance Show AtomDB where show = atomName instance Eq AtomDB where (==) = (==) `on` atomId instance Ord AtomDB where compare a b = compare (atomId a) (atomId b) instance Show Rule where show = ruleName elaborateRules:: UE -> AtomDB -> [Rule] elaborateRules parentEnable atom = if isRule then rule : rules else rules where isRule = not $ null (atomAssigns atom) && null (atomActions atom) enable = uand parentEnable $ atomEnable atom rule = Rule { ruleId = atomId atom , ruleName = atomName atom , ruleEnable = enable , ruleAssigns = map enableAssign $ atomAssigns atom , ruleActions = atomActions atom , rulePeriod = atomPeriod atom , rulePhase = atomPhase atom } assert (name, ue) = Assert { ruleName = name , ruleEnable = enable , ruleAssert = ue } cover (name, ue) = Cover { ruleName = name , ruleEnable = enable , ruleCover = ue } rules = map assert (atomAsserts atom) ++ map cover (atomCovers atom) ++ concatMap (elaborateRules enable) (atomSubs atom) enableAssign :: (UV, UE) -> (UV, UE) enableAssign (uv, ue) = (uv, umux enable ue $ UVRef uv) reIdRules :: Int -> [Rule] -> [Rule] reIdRules _ [] = [] reIdRules i (a:b) = case a of Rule _ _ _ _ _ _ _ -> a { ruleId = i } : reIdRules (i + 1) b _ -> a : reIdRules i b buildAtom :: Global -> Name -> Atom a -> IO (a, (Global, AtomDB)) buildAtom g name (Atom f) = f (g { gRuleId = gRuleId g + 1 }, AtomDB { atomId = gRuleId g , atomName = name , atomNames = [] , atomEnable = ubool True , atomSubs = [] , atomPeriod = gPeriod g , atomPhase = gPhase g , atomAssigns = [] , atomActions = [] , atomAsserts = [] , atomCovers = [] }) -- | The Atom monad holds variable and rule declarations. data Atom a = Atom ((Global, AtomDB) -> IO (a, (Global, AtomDB))) instance Monad Atom where return a = Atom (\ s -> return (a, s)) (Atom f1) >>= f2 = Atom f3 where f3 s = do (a, s) <- f1 s let Atom f4 = f2 a f4 s instance MonadIO Atom where liftIO io = Atom f where f s = do a <- io return (a, s) get :: Atom (Global, AtomDB) get = Atom (\ s -> return (s, s)) put :: (Global, AtomDB) -> Atom () put s = Atom (\ _ -> return ((), s)) -- | A Relation is used for relative performance constraints between 'Action's. -- data Relation = Higher UID | Lower UID deriving (Show, Eq) -- | Given a top level name and design, elaborates design and returns a design database. elaborate :: Name -> Atom () -> IO (Maybe (StateHierarchy, [Rule], [Name], [Name], [(Name, Type)])) elaborate name atom = do (_, (g, atomDB)) <- buildAtom Global { gRuleId = 0, gVarId = 0, gArrayId = 0, gState = [], gProbes = [], gPeriod = 1, gPhase = 0 } name atom let rules = reIdRules 0 $ elaborateRules (ubool True) atomDB coverageNames = [ name | Cover name _ _ <- rules ] assertionNames = [ name | Assert name _ _ <- rules ] probeNames = [ (n, typeOf a) | (n, a) <- gProbes g ] if (null rules) then do putStrLn "ERROR: Design contains no rules. Nothing to do." return Nothing else do mapM_ checkEnable rules ok <- mapM checkAssignConflicts rules return (if and ok then Just (trimState $ StateHierarchy name $ gState g, rules, assertionNames, coverageNames, probeNames) else Nothing) trimState :: StateHierarchy -> StateHierarchy trimState a = case a of StateHierarchy name items -> StateHierarchy name $ filter f $ map trimState items a -> a where f (StateHierarchy _ []) = False f _ = True -- | Checks that a rule will not be trivially disabled. checkEnable :: Rule -> IO () checkEnable rule | ruleEnable rule == ubool False = putStrLn $ "WARNING: Rule will never execute: " ++ show rule | otherwise = return () -- | Check that a variable is assigned more than once in a rule. Will eventually be replaced consistent assignment checking. checkAssignConflicts :: Rule -> IO Bool checkAssignConflicts rule@(Rule _ _ _ _ _ _ _) = if length vars /= length vars' then do putStrLn $ "ERROR: Rule " ++ show rule ++ " contains multiple assignments to the same variable(s)." return False else do return True where vars = fst $ unzip $ ruleAssigns rule vars' = nub vars checkAssignConflicts _ = return True {- -- | Checks that all array indices are not a function of array variables. checkArrayIndices :: [Rule] -> Rule -> IO Bool checkArrayIndices rules rule = where ues = allUEs rule arrayIndices' = concatMap arrayIndices ues [ (name, ) | (UA _ name _, index) <- concatMap arrayIndices ues, UV (Array (UA _ name' init)) <- allUVs rules index, length init /= 1 ] data UA = UA Int String [Const] deriving (Show, Eq, Ord) data UV = UV UVLocality deriving (Show, Eq, Ord) data UVLocality = Array UA UE | External String Type deriving (Show, Eq, Ord) allUVs :: [Rule] -> UE -> [UV] arrayIndices :: UE -> [(UA, UE)] , ruleEnable :: UE , ruleAssigns :: [(UV, UE)] , ruleActions :: [([String] -> String, [UE])] -} -- | Generic local variable declaration. var :: Expr a => Name -> a -> Atom (V a) var name init = do name' <- addName name (g, atom) <- get let uv = UV (gVarId g) name' c c = constant init put (g { gVarId = gVarId g + 1, gState = gState g ++ [StateVariable name c] }, atom) return $ V uv -- | Generic external variable declaration. var' :: Name -> Type -> V a var' name t = V $ UVExtern name t -- | Generic array declaration. array :: Expr a => Name -> [a] -> Atom (A a) array name [] = error $ "ERROR: arrays can not be empty: " ++ name array name init = do name' <- addName name (g, atom) <- get let ua = UA (gArrayId g) name' c c = map constant init put (g { gArrayId = gArrayId g + 1, gState = gState g ++ [StateArray name c] }, atom) return $ A ua -- | Generic external array declaration. array' :: Expr a => Name -> Type -> A a array' name t = A $ UAExtern name t addName :: Name -> Atom Name addName name = do (g, atom) <- get if elem name (atomNames atom) then error $ "ERROR: Name \"" ++ name ++ "\" not unique in " ++ show atom ++ "." else do put (g, atom { atomNames = name : atomNames atom }) return $ atomName atom ++ "." ++ name {- ruleGraph :: Name -> [Rule] -> [UV] -> IO () ruleGraph name rules uvs = do putStrLn $ "Writing rule graph (" ++ name ++ ".dot)..." writeFile (name ++ ".dot") g --system $ "dot -o " ++ name ++ ".png -Tpng " ++ name ++ ".dot" return () where adminUVs = [ UV (-1) "__clock" (External Word64) , UV (-2) "__coverage_index" (External Word32) , UV (-3) "__coverage[__coverage_index]" (External Word32) ] g = unlines [ "digraph " ++ name ++ "{" , concat [ " r" ++ show (ruleId r) ++ " [label = \"" ++ show r ++ "\" shape = ellipse];\n" | r <- rules ] , concat [ " v" ++ show i ++ " [label = \"" ++ n ++ "\" shape = box];\n" | (UV i n _) <- adminUVs ++ uvs ] , concat [ " r" ++ show (ruleId r) ++ " -> v" ++ show i ++ "\n" | r <- rules, (UV i _ _, _) <- ruleAssigns r ] , concat [ " v" ++ show i ++ " -> r" ++ show (ruleId r) ++ "\n" | r <- rules, (UV i _ _) <- ruleUVRefs r ] , "}" ] ruleUVRefs r = nub $ concatMap uvSet ues where ues = ruleEnable r : snd (unzip (ruleAssigns r)) ++ concat (snd (unzip (ruleActions r))) -} -- | All the variables that directly and indirectly control the value of an expression. allUVs :: [Rule] -> UE -> [UV] allUVs rules ue = fixedpoint next $ nearestUVs ue where assigns = concat [ ruleAssigns r | r@(Rule _ _ _ _ _ _ _) <- rules ] previousUVs :: UV -> [UV] previousUVs uv = concat [ nearestUVs ue | (uv', ue) <- assigns, uv == uv' ] next :: [UV] -> [UV] next uvs = sort $ nub $ uvs ++ concatMap previousUVs uvs fixedpoint :: Eq a => (a -> a) -> a -> a fixedpoint f a | a == f a = a | otherwise = fixedpoint f $ f a -- | All primary expressions used in a rule. allUEs :: Rule -> [UE] allUEs rule = ruleEnable rule : ues where index :: UV -> [UE] index (UVArray _ ue) = [ue] index _ = [] ues = case rule of Rule _ _ _ _ _ _ _ -> concat [ ue : index uv | (uv, ue) <- ruleAssigns rule ] ++ concat (snd (unzip (ruleActions rule))) Assert _ _ a -> [a] Cover _ _ a -> [a]