-- | -- Module : Data.Attoparsec -- Copyright : Bryan O'Sullivan 2007-2010 -- License : BSD3 -- -- Maintainer : bos@serpentine.com -- Stability : experimental -- Portability : unknown -- -- Simple, efficient combinator parsing for 'B.ByteString' strings, -- loosely based on the Parsec library. module Data.Attoparsec ( -- * Differences from Parsec -- $parsec -- * Performance considerations -- $performance -- * Parser types I.Parser , Result(..) -- ** Typeclass instances -- $instances -- * Running parsers , parse , feed , parseWith , parseTest -- ** Result conversion , maybeResult , eitherResult -- * Combinators , (I.) , I.try , module Data.Attoparsec.Combinator -- * Parsing individual bytes , I.word8 , I.anyWord8 , I.notWord8 , I.satisfy , I.satisfyWith -- ** Byte classes , I.inClass , I.notInClass -- * Efficient string handling , I.string , I.skipWhile , I.take , I.takeWhile , I.takeWhile1 , I.takeTill -- * State observation and manipulation functions , I.endOfInput , I.ensure ) where import Data.Attoparsec.Combinator import qualified Data.Attoparsec.Internal as I import qualified Data.ByteString as B -- $parsec -- -- Compared to Parsec 3, Attoparsec makes several tradeoffs. It is -- not intended for, or ideal for, all possible uses. -- -- * While Attoparsec can consume input incrementally, Parsec cannot. -- Incremental input is a huge deal for efficient and secure network -- and system programming, since it gives much more control to users -- of the library over matters such as resource usage and the I/O -- model to use. -- -- * Much of the performance advantage of Attoparsec is gained via -- high-performance parsers such as 'I.takeWhile' and 'I.string'. -- If you use complicated combinators that return lists of bytes or -- characters, there really isn't much performance difference the -- two libraries. -- -- * Unlike Parsec 3, Attoparsec does not support being used as a -- monad transformer. This is mostly a matter of the implementor -- not having needed that functionality. -- -- * Attoparsec is specialised to deal only with strict 'B.ByteString' -- input. Efficiency concernts rule out both lists and lazy -- bytestrings. The usual use for lazy bytestrings would be to -- allow consumption of very large input without a large footprint. -- For this need, Attoparsec's incremental input provides an -- excellent substitute, with much more control over when input -- takes place. -- -- * Parsec parsers can produce more helpful error messages than -- Attoparsec parsers. This is a matter of focus: Attoparsec avoids -- the extra book-keeping in favour of higher performance. -- $performance -- -- If you write an Attoparsec-based parser carefully, it can be -- realistic to expect it to perform within a factor of 2 of a -- hand-rolled C parser (measuring megabytes parsed per second). -- -- To actually achieve high performance, there are a few guidelines -- that it is useful to follow. -- -- Use the 'B.ByteString'-oriented parsers whenever possible, -- e.g. 'I.takeWhile1' instead of 'many1' 'I.anyWord8'. There is -- about a factor of 100 difference in performance between the two -- kinds of parser. -- -- For very simple byte-testing predicates, write them by hand instead -- of using 'I.inClass' or 'I.notInClass'. For instance, both of -- these predicates test for an end-of-line byte, but the first is -- much faster than the second: -- -- >endOfLine_fast w = w == 13 || w == 10 -- >endOfLine_slow = inClass "\r\n" -- -- Make active use of benchmarking and profiling tools to measure, -- find the problems with, and improve the performance of your parser. -- $instances -- -- The 'I.Parser' type is an instance of the following classes: -- -- * 'Monad', where 'fail' throws an exception (i.e. fails) with an -- error message. -- -- * 'Functor' and 'Applicative', which follow the usual definitions. -- -- * 'MonadPlus', where 'mzero' fails (with no error message) and -- 'mplus' executes the right-hand parser if the left-hand one -- fails. -- -- * 'Alternative', which follows 'MonadPlus'. -- -- The 'Result' type is an instance of 'Functor', where 'fmap' -- transforms the value in a 'Done' result. -- | The result of a parse. data Result r = Fail !B.ByteString [String] String -- ^ The parse failed. The 'B.ByteString' is the input -- that had not yet been consumed when the failure -- occurred. The @[@'String'@]@ is a list of contexts -- in which the error occurred. The 'String' is the -- message describing the error, if any. | Partial (B.ByteString -> Result r) -- ^ Supply this continuation with more input so that -- the parser can resume. To indicate that no more -- input is available, use an 'B.empty' string. | Done !B.ByteString r -- ^ The parse succeeded. The 'B.ByteString' is the -- input that had not yet been consumed (if any) when -- the parse succeeded. instance Show r => Show (Result r) where show (Fail bs stk msg) = "Fail " ++ show bs ++ " " ++ show stk ++ " " ++ show msg show (Partial _) = "Partial _" show (Done bs r) = "Done " ++ show bs ++ " " ++ show r -- | If a parser has returned a 'Partial' result, supply it with more -- input. feed :: Result r -> B.ByteString -> Result r feed f@(Fail _ _ _) _ = f feed (Partial k) d = k d feed (Done bs r) d = Done (B.append bs d) r fmapR :: (a -> b) -> Result a -> Result b fmapR _ (Fail st stk msg) = Fail st stk msg fmapR f (Partial k) = Partial (fmapR f . k) fmapR f (Done bs r) = Done bs (f r) instance Functor Result where fmap = fmapR -- | Run a parser and print its result to standard output. parseTest :: (Show a) => I.Parser a -> B.ByteString -> IO () parseTest p s = print (parse p s) translate :: I.Result a -> Result a translate (I.Fail st stk msg) = Fail (I.input st) stk msg translate (I.Partial k) = Partial (translate . k) translate (I.Done st r) = Done (I.input st) r -- | Run a parser and return its result. parse :: I.Parser a -> B.ByteString -> Result a parse m s = translate (I.parse m s) {-# INLINE parse #-} -- | Run a parser with an initial input string, and a monadic action -- that can supply more input if needed. parseWith :: Monad m => (m B.ByteString) -- ^ An action that will be executed to provide the parser -- with more input, if necessary. The action must return an -- 'B.empty' string when there is no more input available. -> I.Parser a -> B.ByteString -- ^ Initial input for the parser. -> m (Result a) parseWith refill p s = step $ I.parse p s where step (I.Fail st stk msg) = return $! Fail (I.input st) stk msg step (I.Partial k) = (step . k) =<< refill step (I.Done st r) = return $! Done (I.input st) r -- | Convert a 'Result' value to a 'Maybe' value. A 'Partial' result -- is treated as failure. maybeResult :: Result r -> Maybe r maybeResult (Done _ r) = Just r maybeResult _ = Nothing -- | Convert a 'Result' value to an 'Either' value. A 'Partial' result -- is treated as failure. eitherResult :: Result r -> Either String r eitherResult (Done _ r) = Right r eitherResult (Fail _ _ msg) = Left msg eitherResult _ = Left "Result: incomplete input"