
Neural networks with backprop library

Justin Le

The backprop library performs back-propagation over a hetereogeneous system of relationships. It offers both
an implicit (ad1-like) and explicit graph building usage style. Let’s use it to build neural networks!

Repository source is on github2, and so are the rendered unstable docs3.

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -fno-warn-unused-top-binds #-}

import Data.Functor
import Data.Kind
import Data.Maybe
import Data.Singletons
import Data.Singletons.Prelude
import Data.Singletons.TypeLits
import Data.Type.Combinator
import Data.Type.Product
import GHC.Generics (Generic)
import Numeric.Backprop
import Numeric.Backprop.Iso
import Numeric.LinearAlgebra.Static hiding (dot)
import System.Random.MWC
import qualified Generics.SOP as SOP

Ops

First, we define values of Op for the operations we want to do. Ops are bundles of functions packaged with
their hetereogeneous gradients. For simple numeric functions, backprop can derive Ops automatically. But for
matrix operations, we have to derive them ourselves.

1http://hackage.haskell.org/package/ad
2https://github.com/mstksg/backprop
3https://mstksg.github.io/backprop

1

http://hackage.haskell.org/package/ad
https://github.com/mstksg/backprop
https://mstksg.github.io/backprop

The types help us with matching up the dimensions, but we still need to be careful that our gradients are
calculated correctly.

L and R are matrix and vector types from the great hmatrix library.

First, matrix-vector multiplication:
matVec

:: (KnownNat m, KnownNat n)
=> Op '[L m n, R n] (R m)

matVec = op2' $ \m v -> (m #> v
, \(fromMaybe 1 -> g) ->

(g `outer` v, tr m #> g)
)

Now, dot products:

dot :: KnownNat n
=> Op '[R n, R n] Double

dot = op2' $ \x y -> (x <.> y
, \case Nothing -> (y, x)

Just g -> (konst g * y, x * konst g)
)

Polymorphic functions can be easily turned into Ops with op1/op2 etc., but they can also be run directly on
graph nodes.

logistic :: Floating a => a -> a
logistic x = 1 / (1 + exp (-x))

A Simple Complete Example

At this point, we already have enough to train a simple single-hidden-layer neural network:

simpleOp
:: (KnownNat m, KnownNat n, KnownNat o)
=> R m
-> BPOpI s '[L n m, R n, L o n, R o] (R o)

simpleOp inp = \(w1 :< b1 :< w2 :< b2 :< Ø) ->
let z = logistic $ liftB2 matVec w1 x + b1
in logistic $ liftB2 matVec w2 z + b2

where
x = constVar inp

Here, simpleOp is defined in implicit (non-monadic) style, given a tuple of inputs and returning outputs.
Now simpleOp can be “run” with the input vectors and parameters (a L n m, R n, L o n, and R o) and
calculate the output of the neural net.

runSimple
:: (KnownNat m, KnownNat n, KnownNat o)
=> R m
-> Tuple '[L n m, R n, L o n, R o]
-> R o

runSimple inp = evalBPOp (implicitly $ simpleOp inp)

Alternatively, we can define simpleOp in explicit monadic style, were we specify our graph nodes explicitly.
The results should be the same.

2

simpleOpExplicit
:: (KnownNat m, KnownNat n, KnownNat o)
=> R m
-> BPOp s '[L n m, R n, L o n, R o] (R o)

simpleOpExplicit inp = withInps $ \(w1 :< b1 :< w2 :< b2 :< Ø) -> do
-- First layer
y1 <- matVec ~$ (w1 :< x1 :< Ø)
let x2 = logistic (y1 + b1)
-- Second layer
y2 <- matVec ~$ (w2 :< x2 :< Ø)
return $ logistic (y2 + b2)

where
x1 = constVar inp

Now, for the magic of backprop: the library can now take advantage of the implicit (or explicit) graph and use
it to do back-propagation, too!

simpleGrad
:: forall m n o. (KnownNat m, KnownNat n, KnownNat o)
=> R m
-> R o
-> Tuple '[L n m, R n, L o n, R o]
-> Tuple '[L n m, R n, L o n, R o]

simpleGrad inp targ params = gradBPOp opError params
where

opError :: BPOp s '[L n m, R n, L o n, R o] Double
opError = do

res <- implicitly $ simpleOp inp
-- we explicitly bind err to prevent recomputation
err <- bindVar $ res - t
dot ~$ (err :< err :< Ø)

where
t = constVar targ

The result is the gradient of the input tuple’s components, with respect to the Double result of opError
(the squared error). We can then use this gradient to do gradient descent.

With Parameter Containers

This method doesn’t quite scale, because we might want to make networks with multiple layers and
parameterize networks by layers. Let’s make some basic container data types to help us organize our types,
including a recursive Network type that lets us chain multiple layers.
data Layer :: Nat -> Nat -> Type where

Layer :: { _lWeights :: L m n
, _lBiases :: R m
}

-> Layer n m
deriving (Show, Generic)

data Network :: Nat -> [Nat] -> Nat -> Type where
NØ :: !(Layer a b) -> Network a '[] b

3

(:&) :: !(Layer a b) -> Network b bs c -> Network a (b ': bs) c

A Layer n m is a layer taking an n-vector and returning an m-vector. A Network a '[b, c, d] e
would be a Network that takes in an a-vector and outputs an e-vector, with hidden layers of sizes b, c, and d.

Isomorphisms

The backprop library lets you apply operations on “parts” of data types (like on the weights and biases of a
Layer) by using Iso’s (isomorphisms), like the ones from the lens library. The library doesn’t depend on
lens, but it can use the Isos from the library and also custom-defined ones.

First, we can auto-generate isomorphisms using the generics-sop library:

instance SOP.Generic (Layer n m)

And then can create isomorphisms by hand for the two Network constructors:

netExternal :: Iso' (Network a '[] b) (Tuple '[Layer a b])
netExternal = iso (\case NØ x -> x ::< Ø)

(\case I x :< Ø -> NØ x)

netInternal :: Iso' (Network a (b ': bs) c) (Tuple '[Layer a b, Network b bs c])
netInternal = iso (\case x :& xs -> x ::< xs ::< Ø)

(\case I x :< I xs :< Ø -> x :& xs)

An Iso' a (Tuple as) means that an a can really just be seen as a tuple of as.

Running a network

Now, we can write the BPOp that reprenents running the network and getting a result. We pass in a Sing
bs (a singleton list of the hidden layer sizes) so that we can “pattern match” on the list and handle the
different network constructors differently.
netOp

:: forall s a bs c. (KnownNat a, KnownNat c)
=> Sing bs
-> BPOp s '[R a, Network a bs c] (R c)

netOp sbs = go sbs
where

go :: forall d es. KnownNat d
=> Sing es
-> BPOp s '[R d, Network d es c] (R c)

go = \case
SNil -> withInps $ \(x :< n :< Ø) -> do

-- peek into the NØ using netExternal iso
l :< Ø <- netExternal #<~ n
-- run the 'layerOp' BP, with x and l as inputs
bpOp layerOp ~$ (x :< l :< Ø)

SNat `SCons` ses -> withInps $ \(x :< n :< Ø) -> withSingI ses $ do
-- peek into the (:&) using the netInternal iso
l :< n' :< Ø <- netInternal #<~ n
-- run the 'layerOp' BP, with x and l as inputs
z <- bpOp layerOp ~$ (x :< l :< Ø)
-- run the 'go ses' BP, with z and n as inputs

4

bpOp (go ses) ~$ (z :< n' :< Ø)
layerOp

:: forall d e. (KnownNat d, KnownNat e)
=> BPOp s '[R d, Layer d e] (R e)

layerOp = withInps $ \(x :< l :< Ø) -> do
-- peek into the layer using the gTuple iso, auto-generated with SOP.Generic
w :< b :< Ø <- gTuple #<~ l
y <- matVec ~$ (w :< x :< Ø)
return $ logistic (y + b)

There’s some singletons work going on here, but it’s fairly standard singletons stuff. Most of the complexity
here is from the static typing in our neural network type, and not from backprop.

From backprop specifically, the only elements are #<~ lets you “split” an input ref with the given iso, and
bpOp, which converts a BPOp into an Op that you can bind with ~$.

Note that this library doesn’t support truly pattern matching on GADTs, and that we had to pass in Sing
bs as a reference to the structure of our networks.

Gradient Descent

Now we can do simple gradient descent. Defining an error function:
errOp

:: KnownNat m
=> R m
-> BVar s rs (R m)
-> BPOp s rs Double

errOp targ r = do
err <- bindVar $ r - t
dot ~$ (err :< err :< Ø)

where
t = constVar targ

And now, we can use backprop to generate the gradient, and shift the Network! Things are made a bit
cleaner from the fact that Network a bs c has a Num instance, so we can use (-) and (*) etc.

train
:: (KnownNat a, SingI bs, KnownNat c)
=> Double
-> R a
-> R c
-> Network a bs c
-> Network a bs c

train r x t n = case backprop (errOp t =<< netOp sing) (x ::< n ::< Ø) of
(_, _ :< I g :< Ø) -> n - (realToFrac r * g)

((::<) is cons and Ø is nil for tuples.)

Main

main, which will train on sample data sets, is still in progress! Right now it just generates a random network
using the mwc-random library and prints each internal layer.

5

main :: IO ()
main = withSystemRandom $ \g -> do

n <- uniform @(Network 4 '[3,2] 1) g
void $ traverseNetwork sing (\l -> l <$ print l) n

Appendix: Boilerplate

And now for some typeclass instances and boilerplates unrelated to the backprop library that makes our
custom types easier to use.

instance KnownNat n => Variate (R n) where
uniform g = randomVector <$> uniform g <*> pure Uniform
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> uniform g

instance (KnownNat m, KnownNat n) => Variate (L m n) where
uniform g = uniformSample <$> uniform g <*> pure 0 <*> pure 1
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> uniform g

instance (KnownNat n, KnownNat m) => Variate (Layer n m) where
uniform g = subtract 1 . (* 2) <$> (Layer <$> uniform g <*> uniform g)
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> uniform g

instance (KnownNat m, KnownNat n) => Num (Layer n m) where
Layer w1 b1 + Layer w2 b2 = Layer (w1 + w2) (b1 + b2)
Layer w1 b1 - Layer w2 b2 = Layer (w1 - w2) (b1 - b2)
Layer w1 b1 * Layer w2 b2 = Layer (w1 * w2) (b1 * b2)
abs (Layer w b) = Layer (abs w) (abs b)
signum (Layer w b) = Layer (signum w) (signum b)
negate (Layer w b) = Layer (negate w) (negate b)
fromInteger x = Layer (fromInteger x) (fromInteger x)

instance (KnownNat m, KnownNat n) => Fractional (Layer n m) where
Layer w1 b1 / Layer w2 b2 = Layer (w1 / w2) (b1 / b2)
recip (Layer w b) = Layer (recip w) (recip b)
fromRational x = Layer (fromRational x) (fromRational x)

instance (KnownNat a, SingI bs, KnownNat c) => Variate (Network a bs c) where
uniform g = genNet sing (uniform g)
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> uniform g

genNet
:: forall f a bs c. (Applicative f, KnownNat a, KnownNat c)
=> Sing bs
-> (forall d e. (KnownNat d, KnownNat e) => f (Layer d e))
-> f (Network a bs c)

genNet sbs f = go sbs
where

go :: forall d es. KnownNat d => Sing es -> f (Network d es c)
go = \case

SNil -> NØ <$> f
SNat `SCons` ses -> (:&) <$> f <*> go ses

6

mapNetwork0
:: forall a bs c. (KnownNat a, KnownNat c)
=> Sing bs
-> (forall d e. (KnownNat d, KnownNat e) => Layer d e)
-> Network a bs c

mapNetwork0 sbs f = getI $ genNet sbs (I f)

traverseNetwork
:: forall a bs c f. (KnownNat a, KnownNat c, Applicative f)
=> Sing bs
-> (forall d e. (KnownNat d, KnownNat e) => Layer d e -> f (Layer d e))
-> Network a bs c
-> f (Network a bs c)

traverseNetwork sbs f = go sbs
where

go :: forall d es. KnownNat d => Sing es -> Network d es c -> f (Network d es c)
go = \case

SNil -> \case
NØ x -> NØ <$> f x

SNat `SCons` ses -> \case
x :& xs -> (:&) <$> f x <*> go ses xs

mapNetwork1
:: forall a bs c. (KnownNat a, KnownNat c)
=> Sing bs
-> (forall d e. (KnownNat d, KnownNat e) => Layer d e -> Layer d e)
-> Network a bs c
-> Network a bs c

mapNetwork1 sbs f = getI . traverseNetwork sbs (I . f)

mapNetwork2
:: forall a bs c. (KnownNat a, KnownNat c)
=> Sing bs
-> (forall d e. (KnownNat d, KnownNat e) => Layer d e -> Layer d e -> Layer d e)
-> Network a bs c
-> Network a bs c
-> Network a bs c

mapNetwork2 sbs f = go sbs
where

go :: forall d es. KnownNat d => Sing es -> Network d es c -> Network d es c -> Network d es c
go = \case

SNil -> \case
NØ x -> \case

NØ y -> NØ (f x y)
SNat `SCons` ses -> \case
x :& xs -> \case

y :& ys -> f x y :& go ses xs ys

instance (KnownNat a, SingI bs, KnownNat c) => Num (Network a bs c) where
(+) = mapNetwork2 sing (+)
(-) = mapNetwork2 sing (-)
(*) = mapNetwork2 sing (*)
negate = mapNetwork1 sing negate

7

abs = mapNetwork1 sing abs
signum = mapNetwork1 sing signum
fromInteger x = mapNetwork0 sing (fromInteger x)

instance (KnownNat a, SingI bs, KnownNat c) => Fractional (Network a bs c) where
(/) = mapNetwork2 sing (/)
recip = mapNetwork1 sing recip
fromRational x = mapNetwork0 sing (fromRational x)

8

	Ops
	A Simple Complete Example
	With Parameter Containers
	Isomorphisms

	Running a network
	Gradient Descent

	Main
	Appendix: Boilerplate

