
Learning MNIST with Neural Networks with backprop
library

Justin Le

The backprop library performs back-propagation over a hetereogeneous system of relationships. It offers both
an implicit (ad1-like) and explicit graph building usage style. Let’s use it to build neural networks and learn
mnist!

Repository source is on github2, and docs are on hackage3.

If you’re reading this as a literate haskell file, you should know that a rendered pdf version is available on
github.4. If you are reading this as a pdf file, you should know that a literate haskell version that you can
run5 is also available on github!

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -fno-warn-incomplete-patterns #-}
{-# OPTIONS_GHC -fno-warn-unused-top-binds #-}

import Control.DeepSeq
import Control.Exception
import Control.Monad
import Control.Monad.IO.Class
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.State
import Data.Bitraversable
import Data.Foldable
import Data.IDX
import Data.List.Split
import Data.Maybe
import Data.Time.Clock
import Data.Traversable
import Data.Tuple
import GHC.Generics (Generic)

1http://hackage.haskell.org/package/ad
2https://github.com/mstksg/backprop
3http://hackage.haskell.org/package/backprop
4https://github.com/mstksg/backprop/blob/master/renders/MNIST.pdf
5https://github.com/mstksg/backprop/blob/master/samples/MNIST.lhs

1

http://hackage.haskell.org/package/ad
https://github.com/mstksg/backprop
http://hackage.haskell.org/package/backprop
https://github.com/mstksg/backprop/blob/master/renders/MNIST.pdf
https://github.com/mstksg/backprop/blob/master/samples/MNIST.lhs

import GHC.TypeLits
import Numeric.Backprop
import Numeric.LinearAlgebra.Static hiding (dot)
import Text.Printf
import qualified Data.Vector as V
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Unboxed as VU
import qualified Generics.SOP as SOP
import qualified Numeric.LinearAlgebra as HM
import qualified System.Random.MWC as MWC
import qualified System.Random.MWC.Distributions as MWC

Types

For the most part, we’re going to be using the great hmatrix6 library and its vector and matrix types. It offers
a type L m n for m× n matrices, and a type R n for an n vector.

First things first: let’s define our neural networks as simple containers of parameters (weight matrices and
bias vectors).

First, a type for layers:

data Layer i o =
Layer { _lWeights :: !(L o i)

, _lBiases :: !(R o)
}

deriving (Show, Generic)

instance SOP.Generic (Layer i o)
instance NFData (Layer i o)

And a type for a simple feed-forward network with two hidden layers:

data Network i h1 h2 o =
Net { _nLayer1 :: !(Layer i h1)

, _nLayer2 :: !(Layer h1 h2)
, _nLayer3 :: !(Layer h2 o)
}

deriving (Show, Generic)

instance SOP.Generic (Network i h1 h2 o)
instance NFData (Network i h1 h2 o)

These are pretty straightforward container types. . . pretty much exactly the type you’d make to represent
these networks! Note that, following true Haskell form, we separate out logic from data. This should be all
we need.

We derive an instance of SOP.Generic from the generics-sop7 package, which backprop uses to propagate
derivatives on values inside product types.

6http://hackage.haskell.org/package/hmatrix
7http://hackage.haskell.org/package/generics-sop

2

http://hackage.haskell.org/package/hmatrix
http://hackage.haskell.org/package/generics-sop

Instances

Things are much simplier if we had Num and Fractional instances for everything, so let’s just go ahead
and define that now, as well. Just a little bit of boilerplate.

instance (KnownNat i, KnownNat o) => Num (Layer i o) where
Layer w1 b1 + Layer w2 b2 = Layer (w1 + w2) (b1 + b2)
Layer w1 b1 - Layer w2 b2 = Layer (w1 - w2) (b1 - b2)
Layer w1 b1 * Layer w2 b2 = Layer (w1 * w2) (b1 * b2)
abs (Layer w b) = Layer (abs w) (abs b)
signum (Layer w b) = Layer (signum w) (signum b)
negate (Layer w b) = Layer (negate w) (negate b)
fromInteger x = Layer (fromInteger x) (fromInteger x)

instance (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o) => Num (Network i h1 h2 o) where
Net a b c + Net d e f = Net (a + d) (b + e) (c + f)
Net a b c - Net d e f = Net (a - d) (b - e) (c - f)
Net a b c * Net d e f = Net (a * d) (b * e) (c * f)
abs (Net a b c) = Net (abs a) (abs b) (abs c)
signum (Net a b c) = Net (signum a) (signum b) (signum c)
negate (Net a b c) = Net (negate a) (negate b) (negate c)
fromInteger x = Net (fromInteger x) (fromInteger x) (fromInteger x)

instance (KnownNat i, KnownNat o) => Fractional (Layer i o) where
Layer w1 b1 / Layer w2 b2 = Layer (w1 / w2) (b1 / b2)
recip (Layer w b) = Layer (recip w) (recip b)
fromRational x = Layer (fromRational x) (fromRational x)

instance (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o) => Fractional (Network i h1 h2 o) where
Net a b c / Net d e f = Net (a / d) (b / e) (c / f)
recip (Net a b c) = Net (recip a) (recip b) (recip c)
fromRational x = Net (fromRational x) (fromRational x) (fromRational x)

KnownNat comes from base; it’s a typeclass that hmatrix uses to refer to the numbers in its type and use it to
go about its normal hmatrixy business.

Ops

Now, backprop does require primitive differentiable operations on our relevant types to be defined. backprop
uses these primitive Ops to tie everything together. Ideally we’d import these from a library that implements
these for you, and the end-user never has to make Op primitives.

But in this case, I’m going to put the definitions here to show that there isn’t any magic going on. If you’re
curious, refer to documentation for Op8 for more details on how Op is implemented and how this works.

First, matrix-vector multiplication primitive, giving an explicit gradient function.
matVec

:: (KnownNat m, KnownNat n)
=> Op '[L m n, R n] (R m)

matVec = op2' $ \m v ->
(m #> v, \(fromMaybe 1 -> g) ->

8http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop-Op.html

3

http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop-Op.html

(g `outer` v, tr m #> g)
)

Dot products would be nice too.

dot :: KnownNat n
=> Op '[R n, R n] Double

dot = op2' $ \x y ->
(x <.> y, \case Nothing -> (y, x)

Just g -> (konst g * y, x * konst g)
)

Also a “scaling” function, scales a vector by a given factor.

scale
:: KnownNat n
=> Op '[Double, R n] (R n)

scale = op2' $ \a x ->
(konst a * x
, \case Nothing -> (HM.sumElements (extract x), konst a)

Just g -> (HM.sumElements (extract (x * g)), konst a * g)
)

Finally, an operation to sum all of the items in the vector.
vsum

:: KnownNat n
=> Op '[R n] Double

vsum = op1' $ \x -> (HM.sumElements (extract x), maybe 1 konst)

And why not, here’s the logistic function9, which we’ll use as an activation function for internal layers. We
don’t need to define this as an Op up-front right now, because the library can automatically promote any
numeric polymorphic function (an a -> a or a -> a -> a, etc.) to an Op anyways.

logistic :: Floating a => a -> a
logistic x = 1 / (1 + exp (-x))

Running our Network

Now that we have our primitives in place, let’s actually write a function to run our network!
runLayer

:: (KnownNat i, KnownNat o)
=> BPOp s '[R i, Layer i o] (R o)

runLayer = withInps $ \(x :< l :< Ø) -> do
w :< b :< Ø <- gTuple #<~ l
y <- matVec ~$ (w :< x :< Ø)
return $ y + b

A BPOp s '[R i, Layer i o] (R o) is a backpropagatable function that produces an R o (a vector
with o elements, from the hmatrix10 library) given an input environment of an R i (the “input” of the layer)
and a layer.

9https://en.wikipedia.org/wiki/Logistic_function
10http://hackage.haskell.org/package/hmatrix

4

https://en.wikipedia.org/wiki/Logistic_function
http://hackage.haskell.org/package/hmatrix

We use withInps to bring the environment into scope as a bunch of BVars. x is a BVar containing the
input vector, and l is a BVar containing the layer.

The first thing we do is split out the parts of the layer so we can work with the internal matrices. We
can use #<~ to “split out” the components of a BVar, splitting on gTuple (which uses GHC.Generics to
automatically figure out how to split up a product type).

Then we apply matVec (our primitive Op that does matrix-vector multiplication) to w and x, and then the
result is that added to the bias vector b.

We can write the runNetwork function pretty much the same way.

runNetwork
:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> BPOp s '[R i, Network i h1 h2 o] (R o)

runNetwork = withInps $ \(x :< n :< Ø) -> do
l1 :< l2 :< l3 :< Ø <- gTuple #<~ n
y <- runLayer -$ (x :< l1 :< Ø)
z <- runLayer -$ (logistic y :< l2 :< Ø)
r <- runLayer -$ (logistic z :< l3 :< Ø)
softmax -$ (r :< Ø)

where
softmax :: KnownNat n => BPOp s '[R n] (R n)
softmax = withInps $ \(x :< Ø) -> do

expX <- bindVar (exp x)
totX <- vsum ~$ (expX :< Ø)
scale ~$ (1/totX :< expX :< Ø)

After splitting out the layers in the input Network, we run each layer successively using our previously
defined runLayer, giving inputs using -$. We can directly apply logistic to BVars. At the end, we run
a softmax function11 because MNIST is a classification challenge. The softmax is done by applying ex for
every item in the input vector, and dividing each element by the total.

The Magic

What did we just define? Well, with a BPOp s rs a, we can run it and get the output:
runNetOnInp

:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Network i h1 h2 o
-> R i
-> R o

runNetOnInp n x = evalBPOp runNetwork (x ::< n ::< Ø)

But, the magic part is that we can also get the gradient!

gradNet
:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Network i h1 h2 o
-> R i
-> Network i h1 h2 o

gradNet n x = case gradBPOp runNetwork (x ::< n ::< Ø) of
_gradX ::< gradN ::< Ø -> gradN

This gives the gradient of all of the parameters in the matrices and vectors inside the Network, which we
can use to “train”!

11https://en.wikipedia.org/wiki/Softmax_function

5

https://en.wikipedia.org/wiki/Softmax_function

Training

Now for the real work. To train a network, we can do gradient descent based on the gradient of some type of
error function with respect to the network parameters. Let’s use the cross entropy12, which is popular for
classification problems.
crossEntropy

:: KnownNat n
=> R n
-> BPOpI s '[R n] Double

crossEntropy targ (r :< Ø) = negate (dot .$ (log r :< t :< Ø))
where

t = constVar targ

Given a target vector and a BVar referring to the result of the network, we can directly apply:

H(r, t) = −(log(r) · t)

Just for fun, I implemented crossEntropy in “implicit-graph” mode, so you don’t see any binds or returns.

Now, a function to make one gradient descent step based on an input vector and a target, using gradBPOp:

trainStep
:: forall i h1 h2 o. (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Double
-> R i
-> R o
-> Network i h1 h2 o
-> Network i h1 h2 o

trainStep r !x !t !n = case gradBPOp o (x ::< n ::< Ø) of
_ ::< gN ::< Ø ->

n - (realToFrac r * gN)
where

o :: BPOp s '[R i, Network i h1 h2 o] Double
o = do
y <- runNetwork
implicitly (crossEntropy t) -$ (y :< Ø)

A convenient wrapper for training over all of the observations in a list:

trainList
:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Double
-> [(R i, R o)]
-> Network i h1 h2 o
-> Network i h1 h2 o

trainList r = flip $ foldl' (\n (x,y) -> trainStep r x y n)

Pulling it all together

testNet will be a quick way to test our net by computing the percentage of correct guesses: (mostly using
hmatrix stuff)

12https://en.wikipedia.org/wiki/Cross_entropy

6

https://en.wikipedia.org/wiki/Cross_entropy

testNet
:: forall i h1 h2 o. (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> [(R i, R o)]
-> Network i h1 h2 o
-> Double

testNet xs n = sum (map (uncurry test) xs) / fromIntegral (length xs)
where

test :: R i -> R o -> Double
test x (extract->t)

| HM.maxIndex t == HM.maxIndex (extract r) = 1
| otherwise = 0

where
r :: R o
r = evalBPOp runNetwork (x ::< n ::< Ø)

And now, a main loop!

If you are following along at home, download the mnist data set files13 and uncompress them into the folder
data, and everything should work fine.

main :: IO ()
main = MWC.withSystemRandom $ \g -> do

Just train <- loadMNIST "data/train-images-idx3-ubyte" "data/train-labels-idx1-ubyte"
Just test <- loadMNIST "data/t10k-images-idx3-ubyte" "data/t10k-labels-idx1-ubyte"
putStrLn "Loaded data."
net0 <- MWC.uniformR @(Network 784 300 100 9) (-0.5, 0.5) g
flip evalStateT net0 . forM_ [1..] $ \e -> do

train' <- liftIO . fmap V.toList $ MWC.uniformShuffle (V.fromList train) g
liftIO $ printf "[Epoch %d]\n" (e :: Int)

forM_ ([1..] `zip` chunksOf batch train') $ \(b, chnk) -> StateT $ \n0 -> do
printf "(Batch %d)\n" (b :: Int)

t0 <- getCurrentTime
n' <- evaluate . force $ trainList rate chnk n0
t1 <- getCurrentTime
printf "Trained on %d points in %s.\n" batch (show (t1 `diffUTCTime` t0))

let trainScore = testNet chnk n'
testScore = testNet test n'

printf "Training error: %.2f%%\n" ((1 - trainScore) * 100)
printf "Validation error: %.2f%%\n" ((1 - testScore) * 100)

return ((), n')
where

rate = 0.02
batch = 5000

Each iteration of the loop:

1. Shuffles the training set
2. Splits it into chunks of batch size
3. Uses trainList to train over the batch
4. Computes the score based on testNet based on the training set and the test set

13http://yann.lecun.com/exdb/mnist/

7

http://yann.lecun.com/exdb/mnist/

5. Prints out the results

And, that’s really it!

Result

I haven’t put much into optimizing the library yet, but the network (with hidden layer sizes 300 and 100)
seems to take 25s on my computer to finish a batch of 5000 training points. It’s slow (five minutes per 60000
point epooch), but it’s a first unoptimized run and a proof of concept! It’s my goal to get this down to a point
where the result has the same performance characteristics as the actual backend (hmatrix), and so overhead
is 0.

Main takeaways

Most of the actual heavy lifting/logic actually came from the hmatrix library itself. We just created simple
types to wrap up our bare matrices.

Basically, all that backprop did was give you an API to define how to run a neural net — how to run a net
based on a Network and R i input you were given. The goal of the library is to let you write down how to
run things in as natural way as possible.

And then, after things are run, we can just get the gradient and roll from there!

Because the heavy lifting is done by the data types themselves, we can presumably plug in any type and any
tensor/numerical backend, and reap the benefits of those libraries’ optimizations and parallelizations. Any
type can be backpropagated! :D

What now?

Check out the docs for the Numeric.Backprop14 module for a more detailed picture of what’s going on, or
find more examples at the github repo15!

Boring stuff

Here is a small wrapper function over the mnist-idx16 library loading the contents of the idx files into hmatrix
vectors:

loadMNIST
:: FilePath
-> FilePath
-> IO (Maybe [(R 784, R 9)])

loadMNIST fpI fpL = runMaybeT $ do
i <- MaybeT $ decodeIDXFile fpI
l <- MaybeT $ decodeIDXLabelsFile fpL
d <- MaybeT . return $ labeledIntData l i
r <- MaybeT . return $ for d (bitraverse mkImage mkLabel . swap)
liftIO . evaluate $ force r

where

14http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop.html
15https://github.com/mstksg/backprop
16http://hackage.haskell.org/package/mnist-idx

8

http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop.html
https://github.com/mstksg/backprop
http://hackage.haskell.org/package/mnist-idx

mkImage :: VU.Vector Int -> Maybe (R 784)
mkImage = create . VG.convert . VG.map (\i -> fromIntegral i / 255)
mkLabel :: Int -> Maybe (R 9)
mkLabel n = create $ HM.build 9 (\i -> if round i == n then 1 else 0)

And here are instances to generating random vectors/matrices/layers/networks, used for the initialization
step.

instance KnownNat n => MWC.Variate (R n) where
uniform g = randomVector <$> MWC.uniform g <*> pure Uniform
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat m, KnownNat n) => MWC.Variate (L m n) where
uniform g = uniformSample <$> MWC.uniform g <*> pure 0 <*> pure 1
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat i, KnownNat o) => MWC.Variate (Layer i o) where
uniform g = Layer <$> MWC.uniform g <*> MWC.uniform g
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o) => MWC.Variate (Network i h1 h2 o) where
uniform g = Net <$> MWC.uniform g <*> MWC.uniform g <*> MWC.uniform g
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

9

	Types
	Instances

	Ops
	Running our Network
	The Magic

	Training
	Pulling it all together
	Result

	Main takeaways
	What now?

	Boring stuff

