
Learning MNIST with Neural Networks with backprop
library

Justin Le

The backprop library performs back-propagation over a hetereogeneous system of relationships. back-
propagation is done automatically (as reverse-mode automatic differentiation), and you work with your
values as if you were writing normal functions with them, with the help of lens1.

Repository source is on github2, and docs are on hackage3.

If you’re reading this as a literate haskell file, you should know that a rendered pdf version is available on
github.4. If you are reading this as a pdf file, you should know that a literate haskell version that you can
run5 is also available on github!

The (extra) packages involved are:

• hmatrix
• lens
• mnist-idx
• mwc-random
• one-liner-instances
• split

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -fno-warn-incomplete-patterns #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -fno-warn-unused-top-binds #-}

import Control.DeepSeq
import Control.Exception
import Control.Lens hiding ((<.>))
import Control.Monad
import Control.Monad.IO.Class

1http://hackage.haskell.org/package/lens
2https://github.com/mstksg/backprop
3http://hackage.haskell.org/package/backprop
4https://github.com/mstksg/backprop/blob/master/renders/backprop-mnist.pdf
5https://github.com/mstksg/backprop/blob/master/samples/backprop-mnist.lhs

1

http://hackage.haskell.org/package/lens
https://github.com/mstksg/backprop
http://hackage.haskell.org/package/backprop
https://github.com/mstksg/backprop/blob/master/renders/backprop-mnist.pdf
https://github.com/mstksg/backprop/blob/master/samples/backprop-mnist.lhs

import Control.Monad.Trans.Maybe
import Control.Monad.Trans.State
import Data.Bitraversable
import Data.Foldable
import Data.IDX
import Data.List.Split
import Data.Time.Clock
import Data.Traversable
import Data.Tuple
import GHC.Generics (Generic)
import GHC.TypeLits
import Numeric.Backprop
import Numeric.LinearAlgebra.Static
import Numeric.OneLiner
import Text.Printf
import qualified Data.Vector as V
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Unboxed as VU
import qualified Numeric.LinearAlgebra as HM
import qualified System.Random.MWC as MWC
import qualified System.Random.MWC.Distributions as MWC

Introduction

In this walkthrough, we’ll be building a classifier for the MNIST6 data set. This is meant to mirror the
Tensorflow Tutorial7 for beginners.

Essentially, we use a two-layer artificial neural network – or a series of matrix multiplications, differentiable
function applications, and vector additions. We feed our input image to the ANN and then try to get a label
from it. Training an ANN is a matter of finding the right matrices to multiply by, and the right vectors to
add.

To do that, we train our network by treating our network’s accuracy as a function Network -> Error. If
we can find the gradient of the input network with respect to the error, we can perform gradient descent8,
and slowly make our network better and better.

Finding the gradient is usually complicated, but backprop makes it simpler:

1. Write a function to compute the error from the network
2. That’s it!

Hooray! Once you do that, the library finds the gradient function automatically, without any further
intervention!

Types

For the most part, we’re going to be using the great hmatrix9 library and its vector and matrix types. It offers
a type L m n for m× n matrices, and a type R n for an n vector.

6http://yann.lecun.com/exdb/mnist/
7https://www.tensorflow.org/versions/r1.2/get_started/mnist/beginners
8https://en.wikipedia.org/wiki/Gradient_descent
9http://hackage.haskell.org/package/hmatrix

2

http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/versions/r1.2/get_started/mnist/beginners
https://en.wikipedia.org/wiki/Gradient_descent
http://hackage.haskell.org/package/hmatrix

First things first: let’s define our neural networks as simple containers of parameters (weight matrices and
bias vectors).

First, a type for layers:

data Layer i o =
Layer { _lWeights :: !(L o i)

, _lBiases :: !(R o)
}

deriving (Show, Generic)

instance NFData (Layer i o)
makeLenses ''Layer

And a type for a simple feed-forward network with two hidden layers:

data Network i h1 h2 o =
Net { _nLayer1 :: !(Layer i h1)

, _nLayer2 :: !(Layer h1 h2)
, _nLayer3 :: !(Layer h2 o)
}

deriving (Show, Generic)

instance NFData (Network i h1 h2 o)
makeLenses ''Network

These are pretty straightforward container types. . . pretty much exactly the type you’d make to represent
these networks! Note that, following true Haskell form, we separate out logic from data. This should be all
we need.

Instances

Things are much simplier if we had Num and Fractional instances for everything, so let’s just go ahead and
define that now, as well. Just a little bit of boilerplate, made easier using one-liner-instances10 to auto-derive
instances using Generics.

instance (KnownNat i, KnownNat o) => Num (Layer i o) where
(+) = gPlus
(-) = gMinus
(*) = gTimes
negate = gNegate
abs = gAbs
signum = gSignum
fromInteger = gFromInteger

instance (KnownNat i
, KnownNat h1
, KnownNat h2
, KnownNat o
) => Num (Network i h1 h2 o) where

(+) = gPlus
(-) = gMinus
(*) = gTimes
negate = gNegate

10http://hackage.haskell.org/package/one-liner-instances

3

http://hackage.haskell.org/package/one-liner-instances

abs = gAbs
signum = gSignum
fromInteger = gFromInteger

instance (KnownNat i, KnownNat o) => Fractional (Layer i o) where
(/) = gDivide
recip = gRecip
fromRational = gFromRational

instance (KnownNat i
, KnownNat h1
, KnownNat h2
, KnownNat o
) => Fractional (Network i h1 h2 o) where

(/) = gDivide
recip = gRecip
fromRational = gFromRational

KnownNat comes from base; it’s a typeclass that hmatrix uses to refer to the numbers in its type and use it to
go about its normal hmatrixy business.

Ops

Now, backprop does require primitive differentiable operations on our relevant types to be defined. backprop
uses these primitive operations to tie everything together. Ideally we’d import these from a library that
implements these for you, and the end-user never has to make these primitives.

But in this case, I’m going to put the definitions here to show that there isn’t any magic going on. If you’re
curious, refer to documentation for Op11 for more details on how Op is implemented and how this works.

First, matrix-vector multiplication primitive, giving an explicit gradient function.

infixr 8 #>!
(#>!)

:: (KnownNat m, KnownNat n, Reifies s W)
=> BVar s (L m n)
-> BVar s (R n)
-> BVar s (R m)

(#>!) = liftOp2 . op2 $ \m v ->
(m #> v, \g -> (g `outer` v, tr m #> g))

Dot products would be nice too.

infixr 8 <.>!
(<.>!)

:: (KnownNat n, Reifies s W)
=> BVar s (R n)
-> BVar s (R n)
-> BVar s Double

(<.>!) = liftOp2 . op2 $ \x y ->
(x <.> y, \g -> (konst g * y, x * konst g)
)

11http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop-Op.html

4

http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop-Op.html

Also a function to fill a vector with the same element:

konst'
:: (KnownNat n, Reifies s W)
=> BVar s Double
-> BVar s (R n)

konst' = liftOp1 . op1 $ \c -> (konst c, HM.sumElements . extract)

Finally, an operation to sum all of the items in the vector.

sumElements'
:: (KnownNat n, Reifies s W)
=> BVar s (R n)
-> BVar s Double

sumElements' = liftOp1 . op1 $ \x -> (HM.sumElements (extract x), konst)

Again, these are not intended to be used by end-users of backprop, but rather are meant to be provided by
libraries as primitive operations for users of the library to use.

Running our Network

Now that we have our primitives in place, let’s actually write a function to run our network! And, once we
do this, we automatically also have functions to back-propagate our network!

Normally, to write this function, we’d write:

runLayerNormal
:: (KnownNat i, KnownNat o)
=> Layer i o
-> R i
-> R o

runLayerNormal l x = (l ^. lWeights) #> x + (l ^. lBiases)
{-# INLINE runLayerNormal #-}

Using the lWeights and lBiases lenses to access the weights and biases of our layer. However, we can
translate this to backprop by operating on BVars instead of the type directly, and using our backprop-aware
#>!:
runLayer

:: (KnownNat i, KnownNat o, Reifies s W)
=> BVar s (Layer i o)
-> BVar s (R i)
-> BVar s (R o)

runLayer l x = (l ^^. lWeights) #>! x + (l ^^. lBiases)
{-# INLINE runLayer #-}

ˆ. lets to access data within a value using a lens, and ˆˆ. lets you access data within a BVar using a lens:

(^.) :: a -> Lens' a b -> b
(^^.) :: BVar s a -> Lens' a b -> BVar s b

(There is also ˆˆ?, which can use a Prism or Traversal to extract a target that might not exist, ˆˆ..,
which uses a Traversal to extract all targets, and .~~, which uses a Lens to update a value inside BVar)

Now runLayer is a function on two inputs that can be backpropagated, automatically! We can find its
gradient given any input, and also run it to get our expected output as well.

5

Before writing our final network runner, we need a function to compute the “softmax” of our output vector.
Writing it normally would look like:

softMaxNormal :: KnownNat n => R n -> R n
softMaxNormal x = konst (1 / HM.sumElements (extract expx)) * expx
where

expx = exp x
{-# INLINE softMaxNormal #-}

But we can make the mechanical shift to the backpropagatable version:

softMax :: (KnownNat n, Reifies s W) => BVar s (R n) -> BVar s (R n)
softMax x = konst' (1 / sumElements' expx) * expx
where

expx = exp x
{-# INLINE softMax #-}

We also need the logistic function12, which is our activation function between layer outputs. Because BVars
have a Floating instance, we can just write it using typeclass functions.

logistic :: Floating a => a -> a
logistic x = 1 / (1 + exp (-x))
{-# INLINE logistic #-}

With those in hand, let’s compare how we would normally write a function to run our network:

runNetNormal
:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Network i h1 h2 o
-> R i
-> R o

runNetNormal n = softMaxNormal
. runLayerNormal (n ^. nLayer3)
. logistic
. runLayerNormal (n ^. nLayer2)
. logistic
. runLayerNormal (n ^. nLayer1)

{-# INLINE runNetNormal #-}

Basic function composition, neat. We use our lenses nLayer1, nLayer2, and nLayer3 to extract the first,
second, and third layers from our network.

Writing it in a way that backprop can use is also very similar:

runNetwork
:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o, Reifies s W)
=> BVar s (Network i h1 h2 o)
-> R i
-> BVar s (R o)

runNetwork n = softMax
. runLayer (n ^^. nLayer3)
. logistic
. runLayer (n ^^. nLayer2)
. logistic
. runLayer (n ^^. nLayer1)
. constVar

{-# INLINE runNetwork #-}

12https://en.wikipedia.org/wiki/Logistic_function

6

https://en.wikipedia.org/wiki/Logistic_function

We use constVar on the input vector, because we don’t care about its gradient and so treat it as a constant.

And now here again we use ˆˆ. (instead of ˆ.) to extract a value from our BVar of a Network, using a
lens.

Computing Errors

Now, training a neural network is about calculating its gradient with respect to some error function. The
library calculatues the gradient for us – we just need to tell it how to compute the error function.

For classification problems, we usually use a cross entropy13 error. Given a target vector, how does our
neural network’s output differ from what is expected? Lower numbers are better!

Again, let’s look at a “normal” implementation, regular variables and no backprop:

crossEntropyNormal :: KnownNat n => R n -> R n -> Double
crossEntropyNormal targ res = -(log res <.> targ)
{-# INLINE crossEntropyNormal #-}

And we can see that the backpropable version is pretty similar. We see constVar t, to introduce a BVar
that is a constant value (that we don’t care about the gradient of).
crossEntropy

:: (KnownNat n, Reifies s W)
=> R n
-> BVar s (R n)
-> BVar s Double

crossEntropy targ res = -(log res <.>! constVar targ)
{-# INLINE crossEntropy #-}

Our final “error function”, then, is:
netErr

:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o, Reifies s W)
=> R i
-> R o
-> BVar s (Network i h1 h2 o)
-> BVar s Double

netErr x targ n = crossEntropy targ (runNetwork n x)
{-# INLINE netErr #-}

The Magic

The actual “magic” of the library happens with the functions to “run” the functions we defined earlier:

evalBP :: (forall s. Reifies s W => BVar s a -> BVar s b) -> a -> b
gradBP :: (forall s. Reifies s W => BVar s a -> BVar s b) -> a -> a
backprop :: (forall s. Reifies s W => BVar s a -> BVar s b) -> a -> (b, a)

evalBP “runs” the function like normal, gradBP computes the gradient of the function, and backprop
computes both the result and the gradient.

So, if we have a network net0, an input vector x, and a target vector t, we could compute its error using:

13https://en.wikipedia.org/wiki/Cross_entropy

7

https://en.wikipedia.org/wiki/Cross_entropy

evalBP (netErr x targ) net0 :: Double

And we can calculate its gradient using:

gradBP (netErr x targ) net0 :: (Network i h1 h2 o, R i)

Pulling it all together

Let’s write a simple function to step our network in the direction opposite of the gradient to train our model:

trainStep
:: forall i h1 h2 o. (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Double -- ^ learning rate
-> R i -- ^ input
-> R o -- ^ target
-> Network i h1 h2 o -- ^ initial network
-> Network i h1 h2 o

trainStep r !x !targ !n = n - realToFrac r * gradBP (netErr x targ) n
{-# INLINE trainStep #-}

Here’s a convenient wrapper for training over all of the observations in a list:

trainList
:: (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> Double -- ^ learning rate
-> [(R i, R o)] -- ^ input and target pairs
-> Network i h1 h2 o -- ^ initial network
-> Network i h1 h2 o

trainList r = flip $ foldl' (\n (x,y) -> trainStep r x y n)
{-# INLINE trainList #-}

testNet will be a quick way to test our net by computing the percentage of correct guesses: (mostly using
hmatrix stuff, so don’t mind too much)
testNet

:: forall i h1 h2 o. (KnownNat i, KnownNat h1, KnownNat h2, KnownNat o)
=> [(R i, R o)]
-> Network i h1 h2 o
-> Double

testNet xs n = sum (map (uncurry test) xs) / fromIntegral (length xs)
where

test :: R i -> R o -> Double -- test if the max index is correct
test x (extract->t)

| HM.maxIndex t == HM.maxIndex (extract r) = 1
| otherwise = 0

where
r :: R o
r = evalBP (`runNetwork` x) n

And now, a main loop!

If you are following along at home, download the mnist data set files14 and uncompress them into the folder
data, and everything should work fine.

14http://yann.lecun.com/exdb/mnist/

8

http://yann.lecun.com/exdb/mnist/

main :: IO ()
main = MWC.withSystemRandom $ \g -> do

Just train <- loadMNIST "data/train-images-idx3-ubyte" "data/train-labels-idx1-ubyte"
Just test <- loadMNIST "data/t10k-images-idx3-ubyte" "data/t10k-labels-idx1-ubyte"
putStrLn "Loaded data."
net0 <- MWC.uniformR @(Network 784 300 100 10) (-0.5, 0.5) g
flip evalStateT net0 . forM_ [1..] $ \e -> do

train' <- liftIO . fmap V.toList $ MWC.uniformShuffle (V.fromList train) g
liftIO $ printf "[Epoch %d]\n" (e :: Int)

forM_ ([1..] `zip` chunksOf batch train') $ \(b, chnk) -> StateT $ \n0 -> do
printf "(Batch %d)\n" (b :: Int)

t0 <- getCurrentTime
n' <- evaluate . force $ trainList rate chnk n0
t1 <- getCurrentTime
printf "Trained on %d points in %s.\n" batch (show (t1 `diffUTCTime` t0))

let trainScore = testNet chnk n'
testScore = testNet test n'

printf "Training error: %.2f%%\n" ((1 - trainScore) * 100)
printf "Validation error: %.2f%%\n" ((1 - testScore) * 100)

return ((), n')
where

rate = 0.02
batch = 5000

Each iteration of the loop:

1. Shuffles the training set
2. Splits it into chunks of batch size
3. Uses trainList to train over the batch
4. Computes the score based on testNet based on the training set and the test set
5. Prints out the results

And, that’s really it!

Performance

Currently, benchmarks show that running the network has virtually zero overhead (~ 4%) over writing the
running function directly. The actual gradient descent process (compute gradient, then descend) carries
about 60% overhead over writing the gradients manually, but it is unclear how much of this is because
of the library, and how much of it is just because of automatic differentation giving slightly less efficient
matrix/vector multiplication operations.

The README15 has some more detailed benchmarks and statistics, if you want to get more detailed
information.

15https://github.com/mstksg/backprop

9

https://github.com/mstksg/backprop

Main takeaways

Most of the actual heavy lifting/logic actually came from the hmatrix library itself. We just created simple
types to wrap up our bare matrices.

Basically, all that backprop did was give you an API to define how to run a neural net — how to run a net
based on a Network and R i input you were given. The goal of the library is to let you write down how to
run things in as natural way as possible.

And then, after things are run, we can just get the gradient and roll from there!

Because the heavy lifting is done by the data types themselves, we can presumably plug in any type and any
tensor/numerical backend, and reap the benefits of those libraries’ optimizations and parallelizations. Any
type can be backpropagated! :D

What now?

Check out the docs for the Numeric.Backprop16 module for a more detailed picture of what’s going on, or
find more examples at the github repo17!

Also, check out follow-up writeup to this tutorial, expanding on using the library with more advanced
extensible neural network types, like the ones described in this blog post18. Check out the literate haskell
here19, and the rendered PDF here20.

Boring stuff

Here is a small wrapper function over the mnist-idx21 library loading the contents of the idx files into hmatrix
vectors:

loadMNIST
:: FilePath
-> FilePath
-> IO (Maybe [(R 784, R 10)])

loadMNIST fpI fpL = runMaybeT $ do
i <- MaybeT $ decodeIDXFile fpI
l <- MaybeT $ decodeIDXLabelsFile fpL
d <- MaybeT . return $ labeledIntData l i
r <- MaybeT . return $ for d (bitraverse mkImage mkLabel . swap)
liftIO . evaluate $ force r

where
mkImage :: VU.Vector Int -> Maybe (R 784)
mkImage = create . VG.convert . VG.map (\i -> fromIntegral i / 255)
mkLabel :: Int -> Maybe (R 10)
mkLabel n = create $ HM.build 10 (\i -> if round i == n then 1 else 0)

And here are instances to generating random vectors/matrices/layers/networks, used for the initialization
step.

16http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop.html
17https://github.com/mstksg/backprop
18https://blog.jle.im/entries/series/+practical-dependent-types-in-haskell.html
19https://github.com/mstksg/backprop/blob/master/samples/extensible-neural.lhs
20https://github.com/mstksg/backprop/blob/master/renders/extensible-neural.pdf
21http://hackage.haskell.org/package/mnist-idx

10

http://hackage.haskell.org/package/backprop/docs/Numeric-Backprop.html
https://github.com/mstksg/backprop
https://blog.jle.im/entries/series/+practical-dependent-types-in-haskell.html
https://github.com/mstksg/backprop/blob/master/samples/extensible-neural.lhs
https://github.com/mstksg/backprop/blob/master/renders/extensible-neural.pdf
http://hackage.haskell.org/package/mnist-idx

instance KnownNat n => MWC.Variate (R n) where
uniform g = randomVector <$> MWC.uniform g <*> pure Uniform
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat m, KnownNat n) => MWC.Variate (L m n) where
uniform g = uniformSample <$> MWC.uniform g <*> pure 0 <*> pure 1
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat i, KnownNat o) => MWC.Variate (Layer i o) where
uniform g = Layer <$> MWC.uniform g <*> MWC.uniform g
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

instance (KnownNat i
, KnownNat h1
, KnownNat h2
, KnownNat o
)

=> MWC.Variate (Network i h1 h2 o) where
uniform g = Net <$> MWC.uniform g <*> MWC.uniform g <*> MWC.uniform g
uniformR (l, h) g = (\x -> x * (h - l) + l) <$> MWC.uniform g

11

	Introduction
	Types
	Instances

	Ops
	Running our Network
	Computing Errors

	The Magic
	Pulling it all together
	Performance

	Main takeaways
	What now?

	Boring stuff

