----------------------------------------------------------------------------- -- | -- Module : Data.Barbie.Internal.Traversable ---------------------------------------------------------------------------- {-# LANGUAGE PolyKinds #-} {-# LANGUAGE TypeFamilies #-} module Data.Barbie.Internal.Traversable ( TraversableB(..) , btraverse_ , bsequence , bsequence' , bfoldMap , CanDeriveTraversableB , GTraversableB(..) , gbtraverseDefault ) where import Data.Barbie.Internal.Functor (FunctorB (..)) import Data.Functor (void) import Data.Functor.Compose (Compose (..)) import Data.Functor.Const (Const (..)) import Data.Functor.Identity (Identity (..)) import Data.Functor.Product (Product (..)) import Data.Functor.Sum (Sum (..)) import Data.Kind (Type) import Data.Generics.GenericN import Data.Proxy (Proxy (..)) -- | Barbie-types that can be traversed from left to right. Instances should -- satisfy the following laws: -- -- @ -- t . 'btraverse' f = 'btraverse' (t . f) -- naturality -- 'btraverse' 'Data.Functor.Identity' = 'Data.Functor.Identity' -- identity -- 'btraverse' ('Compose' . 'fmap' g . f) = 'Compose' . 'fmap' ('btraverse' g) . 'btraverse' f -- composition -- @ -- -- There is a default 'btraverse' implementation for 'Generic' types, so -- instances can derived automatically. class FunctorB b => TraversableB (b :: (k -> Type) -> Type) where btraverse :: Applicative t => (forall a . f a -> t (g a)) -> b f -> t (b g) default btraverse :: ( Applicative t, CanDeriveTraversableB b f g) => (forall a . f a -> t (g a)) -> b f -> t (b g) btraverse = gbtraverseDefault -- | Map each element to an action, evaluate these actions from left to right, -- and ignore the results. btraverse_ :: (TraversableB b, Applicative t) => (forall a. f a -> t c) -> b f -> t () btraverse_ f = void . btraverse (fmap (const $ Const ()) . f) -- | Evaluate each action in the structure from left to right, -- and collect the results. bsequence :: (Applicative f, TraversableB b) => b (Compose f g) -> f (b g) bsequence = btraverse getCompose -- | A version of 'bsequence' with @g@ specialized to 'Identity'. bsequence' :: (Applicative f, TraversableB b) => b f -> f (b Identity) bsequence' = btraverse (fmap Identity) -- | Map each element to a monoid, and combine the results. bfoldMap :: (TraversableB b, Monoid m) => (forall a. f a -> m) -> b f -> m bfoldMap f = execWr . btraverse_ (tell . f) -- | @'CanDeriveTraversableB' B f g@ is in practice a predicate about @B@ only. -- It is analogous to 'Data.Barbie.Internal.Functor.CanDeriveFunctorB', so it -- essentially requires the following to hold, for any arbitrary @f@: -- -- * There is an instance of @'Generic' (B f)@. -- -- * @B f@ can contain fields of type @b f@ as long as there exists a -- @'TraversableB' b@ instance. In particular, recursive usages of @B f@ -- are allowed. -- -- * @B f@ can also contain usages of @b f@ under a @'Traversable' h@. -- For example, one could use @'Maybe' (B f)@ when defining @B f@. type CanDeriveTraversableB b f g = ( GenericN (b f) , GenericN (b g) , GTraversableB f g (RepN (b f)) (RepN (b g)) ) -- | Default implementation of 'btraverse' based on 'Generic'. gbtraverseDefault :: forall b f g t . (Applicative t, CanDeriveTraversableB b f g) => (forall a . f a -> t (g a)) -> b f -> t (b g) gbtraverseDefault h = fmap toN . gbtraverse h . fromN {-# INLINE gbtraverseDefault #-} class GTraversableB f g repbf repbg where gbtraverse :: Applicative t => (forall a . f a -> t (g a)) -> repbf x -> t (repbg x) -- ---------------------------------- -- Trivial cases -- ---------------------------------- instance GTraversableB f g bf bg => GTraversableB f g (M1 i c bf) (M1 i c bg) where gbtraverse h = fmap M1 . gbtraverse h . unM1 {-# INLINE gbtraverse #-} instance GTraversableB f g V1 V1 where gbtraverse _ _ = undefined {-# INLINE gbtraverse #-} instance GTraversableB f g U1 U1 where gbtraverse _ = pure {-# INLINE gbtraverse #-} instance (GTraversableB f g l l', GTraversableB f g r r') => GTraversableB f g (l :*: r) (l' :*: r') where gbtraverse h (l :*: r) = (:*:) <$> gbtraverse h l <*> gbtraverse h r {-# INLINE gbtraverse #-} instance (GTraversableB f g l l', GTraversableB f g r r') => GTraversableB f g (l :+: r) (l' :+: r') where gbtraverse h = \case L1 l -> L1 <$> gbtraverse h l R1 r -> R1 <$> gbtraverse h r {-# INLINE gbtraverse #-} -- -------------------------------- -- The interesting cases -- -------------------------------- type P0 = Param 0 instance GTraversableB f g (Rec (P0 f a) (f a)) (Rec (P0 g a) (g a)) where gbtraverse h = fmap (Rec . K1) . h . unK1 . unRec {-# INLINE gbtraverse #-} instance ( SameOrParam b b' , TraversableB b' ) => GTraversableB f g (Rec (b (P0 f)) (b' f)) (Rec (b (P0 g)) (b' g)) where gbtraverse h = fmap (Rec . K1) . btraverse h . unK1 . unRec {-# INLINE gbtraverse #-} instance ( SameOrParam h h' , SameOrParam b b' , Traversable h' , TraversableB b' ) => GTraversableB f g (Rec (h (b (P0 f))) (h' (b' f))) (Rec (h (b (P0 g))) (h' (b' g))) where gbtraverse h = fmap (Rec . K1) . traverse (btraverse h) . unK1 . unRec {-# INLINE gbtraverse #-} instance GTraversableB f g (Rec a a) (Rec a a) where gbtraverse _ = pure {-# INLINE gbtraverse #-} -- We roll our own State/efficient-Writer monad, not to add dependencies newtype St s a = St (s -> (a, s)) runSt :: s -> St s a -> (a, s) runSt s (St f) = f s instance Functor (St s) where fmap f (St g) = St $ (\(a, s') -> (f a, s')) . g {-# INLINE fmap #-} instance Applicative (St s) where pure = St . (,) {-# INLINE pure #-} St l <*> St r = St $ \s -> let (f, s') = l s (x, s'') = r s' in (f x, s'') {-# INLINE (<*>) #-} type Wr = St execWr :: Monoid w => Wr w a -> w execWr = snd . runSt mempty tell :: Monoid w => w -> Wr w () tell w = St (\s -> ((), s `mappend` w)) -- Instances for base types instance TraversableB Proxy where btraverse _ _ = pure Proxy {-# INLINE btraverse #-} instance (TraversableB a, TraversableB b) => TraversableB (Product a b) where btraverse f (Pair x y) = Pair <$> btraverse f x <*> btraverse f y {-# INLINE btraverse #-} instance (TraversableB a, TraversableB b) => TraversableB (Sum a b) where btraverse f (InL x) = InL <$> btraverse f x btraverse f (InR x) = InR <$> btraverse f x {-# INLINE btraverse #-} instance TraversableB (Const a) where btraverse _ (Const x) = pure (Const x) {-# INLINE btraverse #-} instance (Traversable f, TraversableB b) => TraversableB (f `Compose` b) where btraverse h (Compose x) = Compose <$> traverse (btraverse h) x {-# INLINE btraverse #-}