\begin{code} {-# OPTIONS_GHC -XNoImplicitPrelude #-} {-# OPTIONS_HADDOCK hide #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Real -- Copyright : (c) The FFI Task Force, 1994-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The types 'Ratio' and 'Rational', and the classes 'Real', 'Fractional', -- 'Integral', and 'RealFrac'. -- ----------------------------------------------------------------------------- -- #hide module GHC.Real where import GHC.Base import GHC.Num import GHC.List import GHC.Enum import GHC.Show infixr 8 ^, ^^ infixl 7 /, `quot`, `rem`, `div`, `mod` infixl 7 % default () -- Double isn't available yet, -- and we shouldn't be using defaults anyway \end{code} %********************************************************* %* * \subsection{The @Ratio@ and @Rational@ types} %* * %********************************************************* \begin{code} -- | Rational numbers, with numerator and denominator of some 'Integral' type. data (Integral a) => Ratio a = !a :% !a deriving (Eq) -- | Arbitrary-precision rational numbers, represented as a ratio of -- two 'Integer' values. A rational number may be constructed using -- the '%' operator. type Rational = Ratio Integer ratioPrec, ratioPrec1 :: Int ratioPrec = 7 -- Precedence of ':%' constructor ratioPrec1 = ratioPrec + 1 infinity, notANumber :: Rational infinity = 1 :% 0 notANumber = 0 :% 0 -- Use :%, not % for Inf/NaN; the latter would -- immediately lead to a runtime error, because it normalises. \end{code} \begin{code} -- | Forms the ratio of two integral numbers. {-# SPECIALISE (%) :: Integer -> Integer -> Rational #-} (%) :: (Integral a) => a -> a -> Ratio a -- | Extract the numerator of the ratio in reduced form: -- the numerator and denominator have no common factor and the denominator -- is positive. numerator :: (Integral a) => Ratio a -> a -- | Extract the denominator of the ratio in reduced form: -- the numerator and denominator have no common factor and the denominator -- is positive. denominator :: (Integral a) => Ratio a -> a \end{code} \tr{reduce} is a subsidiary function used only in this module . It normalises a ratio by dividing both numerator and denominator by their greatest common divisor. \begin{code} reduce :: (Integral a) => a -> a -> Ratio a {-# SPECIALISE reduce :: Integer -> Integer -> Rational #-} reduce _ 0 = error "Ratio.%: zero denominator" reduce x y = (x `quot` d) :% (y `quot` d) where d = gcd x y \end{code} \begin{code} x % y = reduce (x * signum y) (abs y) numerator (x :% _) = x denominator (_ :% y) = y \end{code} %********************************************************* %* * \subsection{Standard numeric classes} %* * %********************************************************* \begin{code} class (Num a, Ord a) => Real a where -- | the rational equivalent of its real argument with full precision toRational :: a -> Rational -- | Integral numbers, supporting integer division. -- -- Minimal complete definition: 'quotRem' and 'toInteger' class (Real a, Enum a) => Integral a where -- | integer division truncated toward zero quot :: a -> a -> a -- | integer remainder, satisfying -- -- > (x `quot` y)*y + (x `rem` y) == x rem :: a -> a -> a -- | integer division truncated toward negative infinity div :: a -> a -> a -- | integer modulus, satisfying -- -- > (x `div` y)*y + (x `mod` y) == x mod :: a -> a -> a -- | simultaneous 'quot' and 'rem' quotRem :: a -> a -> (a,a) -- | simultaneous 'div' and 'mod' divMod :: a -> a -> (a,a) -- | conversion to 'Integer' toInteger :: a -> Integer n `quot` d = q where (q,_) = quotRem n d n `rem` d = r where (_,r) = quotRem n d n `div` d = q where (q,_) = divMod n d n `mod` d = r where (_,r) = divMod n d divMod n d = if signum r == negate (signum d) then (q-1, r+d) else qr where qr@(q,r) = quotRem n d -- | Fractional numbers, supporting real division. -- -- Minimal complete definition: 'fromRational' and ('recip' or @('/')@) class (Num a) => Fractional a where -- | fractional division (/) :: a -> a -> a -- | reciprocal fraction recip :: a -> a -- | Conversion from a 'Rational' (that is @'Ratio' 'Integer'@). -- A floating literal stands for an application of 'fromRational' -- to a value of type 'Rational', so such literals have type -- @('Fractional' a) => a@. fromRational :: Rational -> a recip x = 1 / x x / y = x * recip y -- | Extracting components of fractions. -- -- Minimal complete definition: 'properFraction' class (Real a, Fractional a) => RealFrac a where -- | The function 'properFraction' takes a real fractional number @x@ -- and returns a pair @(n,f)@ such that @x = n+f@, and: -- -- * @n@ is an integral number with the same sign as @x@; and -- -- * @f@ is a fraction with the same type and sign as @x@, -- and with absolute value less than @1@. -- -- The default definitions of the 'ceiling', 'floor', 'truncate' -- and 'round' functions are in terms of 'properFraction'. properFraction :: (Integral b) => a -> (b,a) -- | @'truncate' x@ returns the integer nearest @x@ between zero and @x@ truncate :: (Integral b) => a -> b -- | @'round' x@ returns the nearest integer to @x@; -- the even integer if @x@ is equidistant between two integers round :: (Integral b) => a -> b -- | @'ceiling' x@ returns the least integer not less than @x@ ceiling :: (Integral b) => a -> b -- | @'floor' x@ returns the greatest integer not greater than @x@ floor :: (Integral b) => a -> b truncate x = m where (m,_) = properFraction x round x = let (n,r) = properFraction x m = if r < 0 then n - 1 else n + 1 in case signum (abs r - 0.5) of -1 -> n 0 -> if even n then n else m 1 -> m _ -> error "round default defn: Bad value" ceiling x = if r > 0 then n + 1 else n where (n,r) = properFraction x floor x = if r < 0 then n - 1 else n where (n,r) = properFraction x \end{code} These 'numeric' enumerations come straight from the Report \begin{code} numericEnumFrom :: (Fractional a) => a -> [a] numericEnumFrom n = n `seq` (n : numericEnumFrom (n + 1)) numericEnumFromThen :: (Fractional a) => a -> a -> [a] numericEnumFromThen n m = n `seq` m `seq` (n : numericEnumFromThen m (m+m-n)) numericEnumFromTo :: (Ord a, Fractional a) => a -> a -> [a] numericEnumFromTo n m = takeWhile (<= m + 1/2) (numericEnumFrom n) numericEnumFromThenTo :: (Ord a, Fractional a) => a -> a -> a -> [a] numericEnumFromThenTo e1 e2 e3 = takeWhile predicate (numericEnumFromThen e1 e2) where mid = (e2 - e1) / 2 predicate | e2 >= e1 = (<= e3 + mid) | otherwise = (>= e3 + mid) \end{code} %********************************************************* %* * \subsection{Instances for @Int@} %* * %********************************************************* \begin{code} instance Real Int where toRational x = toInteger x % 1 instance Integral Int where toInteger (I# i) = smallInteger i a `quot` b | b == 0 = divZeroError | a == minBound && b == (-1) = overflowError | otherwise = a `quotInt` b a `rem` b | b == 0 = divZeroError | a == minBound && b == (-1) = overflowError | otherwise = a `remInt` b a `div` b | b == 0 = divZeroError | a == minBound && b == (-1) = overflowError | otherwise = a `divInt` b a `mod` b | b == 0 = divZeroError | a == minBound && b == (-1) = overflowError | otherwise = a `modInt` b a `quotRem` b | b == 0 = divZeroError | a == minBound && b == (-1) = overflowError | otherwise = a `quotRemInt` b a `divMod` b | b == 0 = divZeroError | a == minBound && b == (-1) = overflowError | otherwise = a `divModInt` b \end{code} %********************************************************* %* * \subsection{Instances for @Integer@} %* * %********************************************************* \begin{code} instance Real Integer where toRational x = x % 1 instance Integral Integer where toInteger n = n _ `quot` 0 = divZeroError n `quot` d = n `quotInteger` d _ `rem` 0 = divZeroError n `rem` d = n `remInteger` d _ `divMod` 0 = divZeroError a `divMod` b = case a `divModInteger` b of (# x, y #) -> (x, y) _ `quotRem` 0 = divZeroError a `quotRem` b = case a `quotRemInteger` b of (# q, r #) -> (q, r) -- use the defaults for div & mod \end{code} %********************************************************* %* * \subsection{Instances for @Ratio@} %* * %********************************************************* \begin{code} instance (Integral a) => Ord (Ratio a) where {-# SPECIALIZE instance Ord Rational #-} (x:%y) <= (x':%y') = x * y' <= x' * y (x:%y) < (x':%y') = x * y' < x' * y instance (Integral a) => Num (Ratio a) where {-# SPECIALIZE instance Num Rational #-} (x:%y) + (x':%y') = reduce (x*y' + x'*y) (y*y') (x:%y) - (x':%y') = reduce (x*y' - x'*y) (y*y') (x:%y) * (x':%y') = reduce (x * x') (y * y') negate (x:%y) = (-x) :% y abs (x:%y) = abs x :% y signum (x:%_) = signum x :% 1 fromInteger x = fromInteger x :% 1 instance (Integral a) => Fractional (Ratio a) where {-# SPECIALIZE instance Fractional Rational #-} (x:%y) / (x':%y') = (x*y') % (y*x') recip (x:%y) = y % x fromRational (x:%y) = fromInteger x :% fromInteger y instance (Integral a) => Real (Ratio a) where {-# SPECIALIZE instance Real Rational #-} toRational (x:%y) = toInteger x :% toInteger y instance (Integral a) => RealFrac (Ratio a) where {-# SPECIALIZE instance RealFrac Rational #-} properFraction (x:%y) = (fromInteger (toInteger q), r:%y) where (q,r) = quotRem x y instance (Integral a) => Show (Ratio a) where {-# SPECIALIZE instance Show Rational #-} showsPrec p (x:%y) = showParen (p > ratioPrec) $ showsPrec ratioPrec1 x . showString " % " . -- H98 report has spaces round the % -- but we removed them [May 04] -- and added them again for consistency with -- Haskell 98 [Sep 08, #1920] showsPrec ratioPrec1 y instance (Integral a) => Enum (Ratio a) where {-# SPECIALIZE instance Enum Rational #-} succ x = x + 1 pred x = x - 1 toEnum n = fromIntegral n :% 1 fromEnum = fromInteger . truncate enumFrom = numericEnumFrom enumFromThen = numericEnumFromThen enumFromTo = numericEnumFromTo enumFromThenTo = numericEnumFromThenTo \end{code} %********************************************************* %* * \subsection{Coercions} %* * %********************************************************* \begin{code} -- | general coercion from integral types fromIntegral :: (Integral a, Num b) => a -> b fromIntegral = fromInteger . toInteger {-# RULES "fromIntegral/Int->Int" fromIntegral = id :: Int -> Int #-} -- | general coercion to fractional types realToFrac :: (Real a, Fractional b) => a -> b realToFrac = fromRational . toRational {-# RULES "realToFrac/Int->Int" realToFrac = id :: Int -> Int #-} \end{code} %********************************************************* %* * \subsection{Overloaded numeric functions} %* * %********************************************************* \begin{code} -- | Converts a possibly-negative 'Real' value to a string. showSigned :: (Real a) => (a -> ShowS) -- ^ a function that can show unsigned values -> Int -- ^ the precedence of the enclosing context -> a -- ^ the value to show -> ShowS showSigned showPos p x | x < 0 = showParen (p > 6) (showChar '-' . showPos (-x)) | otherwise = showPos x even, odd :: (Integral a) => a -> Bool even n = n `rem` 2 == 0 odd = not . even ------------------------------------------------------- -- | raise a number to a non-negative integral power {-# SPECIALISE (^) :: Integer -> Integer -> Integer, Integer -> Int -> Integer, Int -> Int -> Int #-} (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 < 0 = error "Negative exponent" | y0 == 0 = 1 | otherwise = f x0 y0 where -- f : x0 ^ y0 = x ^ y f x y | even y = f (x * x) (y `quot` 2) | y == 1 = x | otherwise = g (x * x) ((y - 1) `quot` 2) x -- g : x0 ^ y0 = (x ^ y) * z g x y z | even y = g (x * x) (y `quot` 2) z | y == 1 = x * z | otherwise = g (x * x) ((y - 1) `quot` 2) (x * z) -- | raise a number to an integral power {-# SPECIALISE (^^) :: Rational -> Int -> Rational #-} (^^) :: (Fractional a, Integral b) => a -> b -> a x ^^ n = if n >= 0 then x^n else recip (x^(negate n)) ------------------------------------------------------- -- | @'gcd' x y@ is the greatest (positive) integer that divides both @x@ -- and @y@; for example @'gcd' (-3) 6@ = @3@, @'gcd' (-3) (-6)@ = @3@, -- @'gcd' 0 4@ = @4@. @'gcd' 0 0@ raises a runtime error. gcd :: (Integral a) => a -> a -> a gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined" gcd x y = gcd' (abs x) (abs y) where gcd' a 0 = a gcd' a b = gcd' b (a `rem` b) -- | @'lcm' x y@ is the smallest positive integer that both @x@ and @y@ divide. lcm :: (Integral a) => a -> a -> a {-# SPECIALISE lcm :: Int -> Int -> Int #-} lcm _ 0 = 0 lcm 0 _ = 0 lcm x y = abs ((x `quot` (gcd x y)) * y) {-# RULES "gcd/Int->Int->Int" gcd = gcdInt "gcd/Integer->Integer->Integer" gcd = gcdInteger' "lcm/Integer->Integer->Integer" lcm = lcmInteger #-} -- XXX to use another Integer implementation, you might need to disable -- the gcd/Integer and lcm/Integer RULES above -- gcdInteger' :: Integer -> Integer -> Integer gcdInteger' 0 0 = error "GHC.Real.gcdInteger': gcd 0 0 is undefined" gcdInteger' a b = gcdInteger a b integralEnumFrom :: (Integral a, Bounded a) => a -> [a] integralEnumFrom n = map fromInteger [toInteger n .. toInteger (maxBound `asTypeOf` n)] integralEnumFromThen :: (Integral a, Bounded a) => a -> a -> [a] integralEnumFromThen n1 n2 | i_n2 >= i_n1 = map fromInteger [i_n1, i_n2 .. toInteger (maxBound `asTypeOf` n1)] | otherwise = map fromInteger [i_n1, i_n2 .. toInteger (minBound `asTypeOf` n1)] where i_n1 = toInteger n1 i_n2 = toInteger n2 integralEnumFromTo :: Integral a => a -> a -> [a] integralEnumFromTo n m = map fromInteger [toInteger n .. toInteger m] integralEnumFromThenTo :: Integral a => a -> a -> a -> [a] integralEnumFromThenTo n1 n2 m = map fromInteger [toInteger n1, toInteger n2 .. toInteger m] \end{code}