{-# LANGUAGE Trustworthy #-} {-# LANGUAGE CPP , NoImplicitPrelude , RecordWildCards , BangPatterns , NondecreasingIndentation , MagicHash #-} {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# OPTIONS_GHC -fno-warn-unused-matches #-} {-# OPTIONS_HADDOCK hide #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.IO.Text -- Copyright : (c) The University of Glasgow, 1992-2008 -- License : see libraries/base/LICENSE -- -- Maintainer : libraries@haskell.org -- Stability : internal -- Portability : non-portable -- -- String I\/O functions -- ----------------------------------------------------------------------------- module GHC.IO.Handle.Text ( hWaitForInput, hGetChar, hGetLine, hGetContents, hPutChar, hPutStr, commitBuffer', -- hack, see below hGetBuf, hGetBufSome, hGetBufNonBlocking, hPutBuf, hPutBufNonBlocking, memcpy, hPutStrLn, ) where import GHC.IO import GHC.IO.FD import GHC.IO.Buffer import qualified GHC.IO.BufferedIO as Buffered import GHC.IO.Exception import GHC.Exception import GHC.IO.Handle.Types import GHC.IO.Handle.Internals import qualified GHC.IO.Device as IODevice import qualified GHC.IO.Device as RawIO import Foreign import Foreign.C import qualified Control.Exception as Exception import Data.Typeable import System.IO.Error import Data.Maybe import Control.Monad import GHC.IORef import GHC.Base import GHC.Real import GHC.Num import GHC.Show import GHC.List -- --------------------------------------------------------------------------- -- Simple input operations -- If hWaitForInput finds anything in the Handle's buffer, it -- immediately returns. If not, it tries to read from the underlying -- OS handle. Notice that for buffered Handles connected to terminals -- this means waiting until a complete line is available. -- | Computation 'hWaitForInput' @hdl t@ -- waits until input is available on handle @hdl@. -- It returns 'True' as soon as input is available on @hdl@, -- or 'False' if no input is available within @t@ milliseconds. Note that -- 'hWaitForInput' waits until one or more full /characters/ are available, -- which means that it needs to do decoding, and hence may fail -- with a decoding error. -- -- If @t@ is less than zero, then @hWaitForInput@ waits indefinitely. -- -- This operation may fail with: -- -- * 'isEOFError' if the end of file has been reached. -- -- * a decoding error, if the input begins with an invalid byte sequence -- in this Handle's encoding. -- -- NOTE for GHC users: unless you use the @-threaded@ flag, -- @hWaitForInput hdl t@ where @t >= 0@ will block all other Haskell -- threads for the duration of the call. It behaves like a -- @safe@ foreign call in this respect. -- hWaitForInput :: Handle -> Int -> IO Bool hWaitForInput h msecs = do wantReadableHandle_ "hWaitForInput" h $ \ handle_@Handle__{..} -> do cbuf <- readIORef haCharBuffer if not (isEmptyBuffer cbuf) then return True else do if msecs < 0 then do cbuf' <- readTextDevice handle_ cbuf writeIORef haCharBuffer cbuf' return True else do -- there might be bytes in the byte buffer waiting to be decoded cbuf' <- decodeByteBuf handle_ cbuf writeIORef haCharBuffer cbuf' if not (isEmptyBuffer cbuf') then return True else do r <- IODevice.ready haDevice False{-read-} msecs if r then do -- Call hLookAhead' to throw an EOF -- exception if appropriate _ <- hLookAhead_ handle_ return True else return False -- XXX we should only return when there are full characters -- not when there are only bytes. That would mean looping -- and re-running IODevice.ready if we don't have any full -- characters; but we don't know how long we've waited -- so far. -- --------------------------------------------------------------------------- -- hGetChar -- | Computation 'hGetChar' @hdl@ reads a character from the file or -- channel managed by @hdl@, blocking until a character is available. -- -- This operation may fail with: -- -- * 'isEOFError' if the end of file has been reached. hGetChar :: Handle -> IO Char hGetChar handle = wantReadableHandle_ "hGetChar" handle $ \handle_@Handle__{..} -> do -- buffering mode makes no difference: we just read whatever is available -- from the device (blocking only if there is nothing available), and then -- return the first character. -- See [note Buffered Reading] in GHC.IO.Handle.Types buf0 <- readIORef haCharBuffer buf1 <- if isEmptyBuffer buf0 then readTextDevice handle_ buf0 else return buf0 (c1,i) <- readCharBuf (bufRaw buf1) (bufL buf1) let buf2 = bufferAdjustL i buf1 if haInputNL == CRLF && c1 == '\r' then do mbuf3 <- if isEmptyBuffer buf2 then maybeFillReadBuffer handle_ buf2 else return (Just buf2) case mbuf3 of -- EOF, so just return the '\r' we have Nothing -> do writeIORef haCharBuffer buf2 return '\r' Just buf3 -> do (c2,i2) <- readCharBuf (bufRaw buf2) (bufL buf2) if c2 == '\n' then do writeIORef haCharBuffer (bufferAdjustL i2 buf3) return '\n' else do -- not a \r\n sequence, so just return the \r writeIORef haCharBuffer buf3 return '\r' else do writeIORef haCharBuffer buf2 return c1 -- --------------------------------------------------------------------------- -- hGetLine -- | Computation 'hGetLine' @hdl@ reads a line from the file or -- channel managed by @hdl@. -- -- This operation may fail with: -- -- * 'isEOFError' if the end of file is encountered when reading -- the /first/ character of the line. -- -- If 'hGetLine' encounters end-of-file at any other point while reading -- in a line, it is treated as a line terminator and the (partial) -- line is returned. hGetLine :: Handle -> IO String hGetLine h = wantReadableHandle_ "hGetLine" h $ \ handle_ -> do hGetLineBuffered handle_ hGetLineBuffered :: Handle__ -> IO String hGetLineBuffered handle_@Handle__{..} = do buf <- readIORef haCharBuffer hGetLineBufferedLoop handle_ buf [] hGetLineBufferedLoop :: Handle__ -> CharBuffer -> [String] -> IO String hGetLineBufferedLoop handle_@Handle__{..} buf@Buffer{ bufL=r0, bufR=w, bufRaw=raw0 } xss = let -- find the end-of-line character, if there is one loop raw r | r == w = return (False, w) | otherwise = do (c,r') <- readCharBuf raw r if c == '\n' then return (True, r) -- NB. not r': don't include the '\n' else loop raw r' in do (eol, off) <- loop raw0 r0 debugIO ("hGetLineBufferedLoop: r=" ++ show r0 ++ ", w=" ++ show w ++ ", off=" ++ show off) (xs,r') <- if haInputNL == CRLF then unpack_nl raw0 r0 off "" else do xs <- unpack raw0 r0 off "" return (xs,off) -- if eol == True, then off is the offset of the '\n' -- otherwise off == w and the buffer is now empty. if eol -- r' == off then do writeIORef haCharBuffer (bufferAdjustL (off+1) buf) return (concat (reverse (xs:xss))) else do let buf1 = bufferAdjustL r' buf maybe_buf <- maybeFillReadBuffer handle_ buf1 case maybe_buf of -- Nothing indicates we caught an EOF, and we may have a -- partial line to return. Nothing -> do -- we reached EOF. There might be a lone \r left -- in the buffer, so check for that and -- append it to the line if necessary. -- let pre = if not (isEmptyBuffer buf1) then "\r" else "" writeIORef haCharBuffer buf1{ bufL=0, bufR=0 } let str = concat (reverse (pre:xs:xss)) if not (null str) then return str else ioe_EOF Just new_buf -> hGetLineBufferedLoop handle_ new_buf (xs:xss) maybeFillReadBuffer :: Handle__ -> CharBuffer -> IO (Maybe CharBuffer) maybeFillReadBuffer handle_ buf = Exception.catch (do buf' <- getSomeCharacters handle_ buf return (Just buf') ) (\e -> do if isEOFError e then return Nothing else ioError e) -- See GHC.IO.Buffer #define CHARBUF_UTF32 -- #define CHARBUF_UTF16 -- NB. performance-critical code: eyeball the Core. unpack :: RawCharBuffer -> Int -> Int -> [Char] -> IO [Char] unpack !buf !r !w acc0 | r == w = return acc0 | otherwise = withRawBuffer buf $ \pbuf -> let unpackRB acc !i | i < r = return acc | otherwise = do -- Here, we are rather careful to only put an *evaluated* character -- in the output string. Due to pointer tagging, this allows the consumer -- to avoid ping-ponging between the actual consumer code and the thunk code #ifdef CHARBUF_UTF16 -- reverse-order decoding of UTF-16 c2 <- peekElemOff pbuf i if (c2 < 0xdc00 || c2 > 0xdffff) then unpackRB (unsafeChr (fromIntegral c2) : acc) (i-1) else do c1 <- peekElemOff pbuf (i-1) let c = (fromIntegral c1 - 0xd800) * 0x400 + (fromIntegral c2 - 0xdc00) + 0x10000 case desurrogatifyRoundtripCharacter (unsafeChr c) of { C# c# -> unpackRB (C# c# : acc) (i-2) } #else c <- peekElemOff pbuf i unpackRB (c : acc) (i-1) #endif in unpackRB acc0 (w-1) -- NB. performance-critical code: eyeball the Core. unpack_nl :: RawCharBuffer -> Int -> Int -> [Char] -> IO ([Char],Int) unpack_nl !buf !r !w acc0 | r == w = return (acc0, 0) | otherwise = withRawBuffer buf $ \pbuf -> let unpackRB acc !i | i < r = return acc | otherwise = do c <- peekElemOff pbuf i if (c == '\n' && i > r) then do c1 <- peekElemOff pbuf (i-1) if (c1 == '\r') then unpackRB ('\n':acc) (i-2) else unpackRB ('\n':acc) (i-1) else do unpackRB (c : acc) (i-1) in do c <- peekElemOff pbuf (w-1) if (c == '\r') then do -- If the last char is a '\r', we need to know whether or -- not it is followed by a '\n', so leave it in the buffer -- for now and just unpack the rest. str <- unpackRB acc0 (w-2) return (str, w-1) else do str <- unpackRB acc0 (w-1) return (str, w) -- Note [#5536] -- -- We originally had -- -- let c' = desurrogatifyRoundtripCharacter c in -- c' `seq` unpackRB (c':acc) (i-1) -- -- but this resulted in Core like -- -- case (case x <# y of True -> C# e1; False -> C# e2) of c -- C# _ -> unpackRB (c:acc) (i-1) -- -- which compiles into a continuation for the outer case, with each -- branch of the inner case building a C# and then jumping to the -- continuation. We'd rather not have this extra jump, which makes -- quite a difference to performance (see #5536) It turns out that -- matching on the C# directly causes GHC to do the case-of-case, -- giving much straighter code. -- ----------------------------------------------------------------------------- -- hGetContents -- hGetContents on a DuplexHandle only affects the read side: you can -- carry on writing to it afterwards. -- | Computation 'hGetContents' @hdl@ returns the list of characters -- corresponding to the unread portion of the channel or file managed -- by @hdl@, which is put into an intermediate state, /semi-closed/. -- In this state, @hdl@ is effectively closed, -- but items are read from @hdl@ on demand and accumulated in a special -- list returned by 'hGetContents' @hdl@. -- -- Any operation that fails because a handle is closed, -- also fails if a handle is semi-closed. The only exception is 'hClose'. -- A semi-closed handle becomes closed: -- -- * if 'hClose' is applied to it; -- -- * if an I\/O error occurs when reading an item from the handle; -- -- * or once the entire contents of the handle has been read. -- -- Once a semi-closed handle becomes closed, the contents of the -- associated list becomes fixed. The contents of this final list is -- only partially specified: it will contain at least all the items of -- the stream that were evaluated prior to the handle becoming closed. -- -- Any I\/O errors encountered while a handle is semi-closed are simply -- discarded. -- -- This operation may fail with: -- -- * 'isEOFError' if the end of file has been reached. hGetContents :: Handle -> IO String hGetContents handle = wantReadableHandle "hGetContents" handle $ \handle_ -> do xs <- lazyRead handle return (handle_{ haType=SemiClosedHandle}, xs ) -- Note that someone may close the semi-closed handle (or change its -- buffering), so each time these lazy read functions are pulled on, -- they have to check whether the handle has indeed been closed. lazyRead :: Handle -> IO String lazyRead handle = unsafeInterleaveIO $ withHandle "hGetContents" handle $ \ handle_ -> do case haType handle_ of ClosedHandle -> return (handle_, "") SemiClosedHandle -> lazyReadBuffered handle handle_ _ -> ioException (IOError (Just handle) IllegalOperation "hGetContents" "illegal handle type" Nothing Nothing) lazyReadBuffered :: Handle -> Handle__ -> IO (Handle__, [Char]) lazyReadBuffered h handle_@Handle__{..} = do buf <- readIORef haCharBuffer Exception.catch (do buf'@Buffer{..} <- getSomeCharacters handle_ buf lazy_rest <- lazyRead h (s,r) <- if haInputNL == CRLF then unpack_nl bufRaw bufL bufR lazy_rest else do s <- unpack bufRaw bufL bufR lazy_rest return (s,bufR) writeIORef haCharBuffer (bufferAdjustL r buf') return (handle_, s) ) (\e -> do (handle_', _) <- hClose_help handle_ debugIO ("hGetContents caught: " ++ show e) -- We might have a \r cached in CRLF mode. So we -- need to check for that and return it: let r = if isEOFError e then if not (isEmptyBuffer buf) then "\r" else "" else throw (augmentIOError e "hGetContents" h) return (handle_', r) ) -- ensure we have some characters in the buffer getSomeCharacters :: Handle__ -> CharBuffer -> IO CharBuffer getSomeCharacters handle_@Handle__{..} buf@Buffer{..} = case bufferElems buf of -- buffer empty: read some more 0 -> readTextDevice handle_ buf -- if the buffer has a single '\r' in it and we're doing newline -- translation: read some more 1 | haInputNL == CRLF -> do (c,_) <- readCharBuf bufRaw bufL if c == '\r' then do -- shuffle the '\r' to the beginning. This is only safe -- if we're about to call readTextDevice, otherwise it -- would mess up flushCharBuffer. -- See [note Buffer Flushing], GHC.IO.Handle.Types _ <- writeCharBuf bufRaw 0 '\r' let buf' = buf{ bufL=0, bufR=1 } readTextDevice handle_ buf' else do return buf -- buffer has some chars in it already: just return it _otherwise -> return buf -- --------------------------------------------------------------------------- -- hPutChar -- | Computation 'hPutChar' @hdl ch@ writes the character @ch@ to the -- file or channel managed by @hdl@. Characters may be buffered if -- buffering is enabled for @hdl@. -- -- This operation may fail with: -- -- * 'isFullError' if the device is full; or -- -- * 'isPermissionError' if another system resource limit would be exceeded. hPutChar :: Handle -> Char -> IO () hPutChar handle c = do c `seq` return () wantWritableHandle "hPutChar" handle $ \ handle_ -> do hPutcBuffered handle_ c hPutcBuffered :: Handle__ -> Char -> IO () hPutcBuffered handle_@Handle__{..} c = do buf <- readIORef haCharBuffer if c == '\n' then do buf1 <- if haOutputNL == CRLF then do buf1 <- putc buf '\r' putc buf1 '\n' else do putc buf '\n' writeCharBuffer handle_ buf1 when is_line $ flushByteWriteBuffer handle_ else do buf1 <- putc buf c writeCharBuffer handle_ buf1 return () where is_line = case haBufferMode of LineBuffering -> True _ -> False putc buf@Buffer{ bufRaw=raw, bufR=w } c = do debugIO ("putc: " ++ summaryBuffer buf) w' <- writeCharBuf raw w c return buf{ bufR = w' } -- --------------------------------------------------------------------------- -- hPutStr -- We go to some trouble to avoid keeping the handle locked while we're -- evaluating the string argument to hPutStr, in case doing so triggers another -- I/O operation on the same handle which would lead to deadlock. The classic -- case is -- -- putStr (trace "hello" "world") -- -- so the basic scheme is this: -- -- * copy the string into a fresh buffer, -- * "commit" the buffer to the handle. -- -- Committing may involve simply copying the contents of the new -- buffer into the handle's buffer, flushing one or both buffers, or -- maybe just swapping the buffers over (if the handle's buffer was -- empty). See commitBuffer below. -- | Computation 'hPutStr' @hdl s@ writes the string -- @s@ to the file or channel managed by @hdl@. -- -- This operation may fail with: -- -- * 'isFullError' if the device is full; or -- -- * 'isPermissionError' if another system resource limit would be exceeded. hPutStr :: Handle -> String -> IO () hPutStr handle str = hPutStr' handle str False -- | The same as 'hPutStr', but adds a newline character. hPutStrLn :: Handle -> String -> IO () hPutStrLn handle str = hPutStr' handle str True -- An optimisation: we treat hPutStrLn specially, to avoid the -- overhead of a single putChar '\n', which is quite high now that we -- have to encode eagerly. hPutStr' :: Handle -> String -> Bool -> IO () hPutStr' handle str add_nl = do (buffer_mode, nl) <- wantWritableHandle "hPutStr" handle $ \h_ -> do bmode <- getSpareBuffer h_ return (bmode, haOutputNL h_) case buffer_mode of (NoBuffering, _) -> do hPutChars handle str -- v. slow, but we don't care when add_nl $ hPutChar handle '\n' (LineBuffering, buf) -> do writeBlocks handle True add_nl nl buf str (BlockBuffering _, buf) -> do writeBlocks handle False add_nl nl buf str hPutChars :: Handle -> [Char] -> IO () hPutChars _ [] = return () hPutChars handle (c:cs) = hPutChar handle c >> hPutChars handle cs getSpareBuffer :: Handle__ -> IO (BufferMode, CharBuffer) getSpareBuffer Handle__{haCharBuffer=ref, haBuffers=spare_ref, haBufferMode=mode} = do case mode of NoBuffering -> return (mode, error "no buffer!") _ -> do bufs <- readIORef spare_ref buf <- readIORef ref case bufs of BufferListCons b rest -> do writeIORef spare_ref rest return ( mode, emptyBuffer b (bufSize buf) WriteBuffer) BufferListNil -> do new_buf <- newCharBuffer (bufSize buf) WriteBuffer return (mode, new_buf) -- NB. performance-critical code: eyeball the Core. writeBlocks :: Handle -> Bool -> Bool -> Newline -> Buffer CharBufElem -> String -> IO () writeBlocks hdl line_buffered add_nl nl buf@Buffer{ bufRaw=raw, bufSize=len } s = let shoveString :: Int -> [Char] -> [Char] -> IO () shoveString !n [] [] = do commitBuffer hdl raw len n False{-no flush-} True{-release-} shoveString !n [] rest = do shoveString n rest [] shoveString !n (c:cs) rest -- n+1 so we have enough room to write '\r\n' if necessary | n + 1 >= len = do commitBuffer hdl raw len n False{-flush-} False shoveString 0 (c:cs) rest | c == '\n' = do n' <- if nl == CRLF then do n1 <- writeCharBuf raw n '\r' writeCharBuf raw n1 '\n' else do writeCharBuf raw n c if line_buffered then do -- end of line, so write and flush commitBuffer hdl raw len n' True{-flush-} False shoveString 0 cs rest else do shoveString n' cs rest | otherwise = do n' <- writeCharBuf raw n c shoveString n' cs rest in shoveString 0 s (if add_nl then "\n" else "") -- ----------------------------------------------------------------------------- -- commitBuffer handle buf sz count flush release -- -- Write the contents of the buffer 'buf' ('sz' bytes long, containing -- 'count' bytes of data) to handle (handle must be block or line buffered). commitBuffer :: Handle -- handle to commit to -> RawCharBuffer -> Int -- address and size (in bytes) of buffer -> Int -- number of bytes of data in buffer -> Bool -- True <=> flush the handle afterward -> Bool -- release the buffer? -> IO () commitBuffer hdl !raw !sz !count flush release = wantWritableHandle "commitBuffer" hdl $ \h_@Handle__{..} -> do debugIO ("commitBuffer: sz=" ++ show sz ++ ", count=" ++ show count ++ ", flush=" ++ show flush ++ ", release=" ++ show release) writeCharBuffer h_ Buffer{ bufRaw=raw, bufState=WriteBuffer, bufL=0, bufR=count, bufSize=sz } when flush $ flushByteWriteBuffer h_ -- release the buffer if necessary when release $ do -- find size of current buffer old_buf@Buffer{ bufSize=size } <- readIORef haCharBuffer when (sz == size) $ do spare_bufs <- readIORef haBuffers writeIORef haBuffers (BufferListCons raw spare_bufs) return () -- backwards compatibility; the text package uses this commitBuffer' :: RawCharBuffer -> Int -> Int -> Bool -> Bool -> Handle__ -> IO CharBuffer commitBuffer' raw sz@(I# _) count@(I# _) flush release h_@Handle__{..} = do debugIO ("commitBuffer: sz=" ++ show sz ++ ", count=" ++ show count ++ ", flush=" ++ show flush ++ ", release=" ++ show release) let this_buf = Buffer{ bufRaw=raw, bufState=WriteBuffer, bufL=0, bufR=count, bufSize=sz } writeCharBuffer h_ this_buf when flush $ flushByteWriteBuffer h_ -- release the buffer if necessary when release $ do -- find size of current buffer old_buf@Buffer{ bufSize=size } <- readIORef haCharBuffer when (sz == size) $ do spare_bufs <- readIORef haBuffers writeIORef haBuffers (BufferListCons raw spare_bufs) return this_buf -- --------------------------------------------------------------------------- -- Reading/writing sequences of bytes. -- --------------------------------------------------------------------------- -- hPutBuf -- | 'hPutBuf' @hdl buf count@ writes @count@ 8-bit bytes from the -- buffer @buf@ to the handle @hdl@. It returns (). -- -- 'hPutBuf' ignores any text encoding that applies to the 'Handle', -- writing the bytes directly to the underlying file or device. -- -- 'hPutBuf' ignores the prevailing 'TextEncoding' and -- 'NewlineMode' on the 'Handle', and writes bytes directly. -- -- This operation may fail with: -- -- * 'ResourceVanished' if the handle is a pipe or socket, and the -- reading end is closed. (If this is a POSIX system, and the program -- has not asked to ignore SIGPIPE, then a SIGPIPE may be delivered -- instead, whose default action is to terminate the program). hPutBuf :: Handle -- handle to write to -> Ptr a -- address of buffer -> Int -- number of bytes of data in buffer -> IO () hPutBuf h ptr count = do _ <- hPutBuf' h ptr count True return () hPutBufNonBlocking :: Handle -- handle to write to -> Ptr a -- address of buffer -> Int -- number of bytes of data in buffer -> IO Int -- returns: number of bytes written hPutBufNonBlocking h ptr count = hPutBuf' h ptr count False hPutBuf':: Handle -- handle to write to -> Ptr a -- address of buffer -> Int -- number of bytes of data in buffer -> Bool -- allow blocking? -> IO Int hPutBuf' handle ptr count can_block | count == 0 = return 0 | count < 0 = illegalBufferSize handle "hPutBuf" count | otherwise = wantWritableHandle "hPutBuf" handle $ \ h_@Handle__{..} -> do debugIO ("hPutBuf count=" ++ show count) r <- bufWrite h_ (castPtr ptr) count can_block -- we must flush if this Handle is set to NoBuffering. If -- it is set to LineBuffering, be conservative and flush -- anyway (we didn't check for newlines in the data). case haBufferMode of BlockBuffering _ -> do return () _line_or_no_buffering -> do flushWriteBuffer h_ return r bufWrite :: Handle__-> Ptr Word8 -> Int -> Bool -> IO Int bufWrite h_@Handle__{..} ptr count can_block = seq count $ do -- strictness hack old_buf@Buffer{ bufRaw=old_raw, bufR=w, bufSize=size } <- readIORef haByteBuffer -- enough room in handle buffer? if (size - w > count) -- There's enough room in the buffer: -- just copy the data in and update bufR. then do debugIO ("hPutBuf: copying to buffer, w=" ++ show w) copyToRawBuffer old_raw w ptr count writeIORef haByteBuffer old_buf{ bufR = w + count } return count -- else, we have to flush else do debugIO "hPutBuf: flushing first" old_buf' <- Buffered.flushWriteBuffer haDevice old_buf -- TODO: we should do a non-blocking flush here writeIORef haByteBuffer old_buf' -- if we can fit in the buffer, then just loop if count < size then bufWrite h_ ptr count can_block else if can_block then do writeChunk h_ (castPtr ptr) count return count else writeChunkNonBlocking h_ (castPtr ptr) count writeChunk :: Handle__ -> Ptr Word8 -> Int -> IO () writeChunk h_@Handle__{..} ptr bytes | Just fd <- cast haDevice = RawIO.write (fd::FD) ptr bytes | otherwise = error "Todo: hPutBuf" writeChunkNonBlocking :: Handle__ -> Ptr Word8 -> Int -> IO Int writeChunkNonBlocking h_@Handle__{..} ptr bytes | Just fd <- cast haDevice = RawIO.writeNonBlocking (fd::FD) ptr bytes | otherwise = error "Todo: hPutBuf" -- --------------------------------------------------------------------------- -- hGetBuf -- | 'hGetBuf' @hdl buf count@ reads data from the handle @hdl@ -- into the buffer @buf@ until either EOF is reached or -- @count@ 8-bit bytes have been read. -- It returns the number of bytes actually read. This may be zero if -- EOF was reached before any data was read (or if @count@ is zero). -- -- 'hGetBuf' never raises an EOF exception, instead it returns a value -- smaller than @count@. -- -- If the handle is a pipe or socket, and the writing end -- is closed, 'hGetBuf' will behave as if EOF was reached. -- -- 'hGetBuf' ignores the prevailing 'TextEncoding' and 'NewlineMode' -- on the 'Handle', and reads bytes directly. hGetBuf :: Handle -> Ptr a -> Int -> IO Int hGetBuf h ptr count | count == 0 = return 0 | count < 0 = illegalBufferSize h "hGetBuf" count | otherwise = wantReadableHandle_ "hGetBuf" h $ \ h_@Handle__{..} -> do flushCharReadBuffer h_ buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz } <- readIORef haByteBuffer if isEmptyBuffer buf then bufReadEmpty h_ buf (castPtr ptr) 0 count else bufReadNonEmpty h_ buf (castPtr ptr) 0 count -- small reads go through the buffer, large reads are satisfied by -- taking data first from the buffer and then direct from the file -- descriptor. bufReadNonEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int bufReadNonEmpty h_@Handle__{..} buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz } ptr !so_far !count = do let avail = w - r if (count < avail) then do copyFromRawBuffer ptr raw r count writeIORef haByteBuffer buf{ bufL = r + count } return (so_far + count) else do copyFromRawBuffer ptr raw r avail let buf' = buf{ bufR=0, bufL=0 } writeIORef haByteBuffer buf' let remaining = count - avail so_far' = so_far + avail ptr' = ptr `plusPtr` avail if remaining == 0 then return so_far' else bufReadEmpty h_ buf' ptr' so_far' remaining bufReadEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int bufReadEmpty h_@Handle__{..} buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz } ptr so_far count | count > sz, Just fd <- cast haDevice = loop fd 0 count | otherwise = do (r,buf') <- Buffered.fillReadBuffer haDevice buf if r == 0 then return so_far else do writeIORef haByteBuffer buf' bufReadNonEmpty h_ buf' ptr so_far count where loop :: FD -> Int -> Int -> IO Int loop fd off bytes | bytes <= 0 = return (so_far + off) loop fd off bytes = do r <- RawIO.read (fd::FD) (ptr `plusPtr` off) bytes if r == 0 then return (so_far + off) else loop fd (off + r) (bytes - r) -- --------------------------------------------------------------------------- -- hGetBufSome -- | 'hGetBufSome' @hdl buf count@ reads data from the handle @hdl@ -- into the buffer @buf@. If there is any data available to read, -- then 'hGetBufSome' returns it immediately; it only blocks if there -- is no data to be read. -- -- It returns the number of bytes actually read. This may be zero if -- EOF was reached before any data was read (or if @count@ is zero). -- -- 'hGetBufSome' never raises an EOF exception, instead it returns a value -- smaller than @count@. -- -- If the handle is a pipe or socket, and the writing end -- is closed, 'hGetBufSome' will behave as if EOF was reached. -- -- 'hGetBufSome' ignores the prevailing 'TextEncoding' and 'NewlineMode' -- on the 'Handle', and reads bytes directly. hGetBufSome :: Handle -> Ptr a -> Int -> IO Int hGetBufSome h ptr count | count == 0 = return 0 | count < 0 = illegalBufferSize h "hGetBufSome" count | otherwise = wantReadableHandle_ "hGetBufSome" h $ \ h_@Handle__{..} -> do flushCharReadBuffer h_ buf@Buffer{ bufSize=sz } <- readIORef haByteBuffer if isEmptyBuffer buf then case count > sz of -- large read? optimize it with a little special case: True | Just fd <- haFD h_ -> do RawIO.read fd (castPtr ptr) count _ -> do (r,buf') <- Buffered.fillReadBuffer haDevice buf if r == 0 then return 0 else do writeIORef haByteBuffer buf' bufReadNBNonEmpty h_ buf' (castPtr ptr) 0 (min r count) -- new count is (min r count), so -- that bufReadNBNonEmpty will not -- issue another read. else let count' = min count (bufferElems buf) in bufReadNBNonEmpty h_ buf (castPtr ptr) 0 count' haFD :: Handle__ -> Maybe FD haFD h_@Handle__{..} = cast haDevice -- | 'hGetBufNonBlocking' @hdl buf count@ reads data from the handle @hdl@ -- into the buffer @buf@ until either EOF is reached, or -- @count@ 8-bit bytes have been read, or there is no more data available -- to read immediately. -- -- 'hGetBufNonBlocking' is identical to 'hGetBuf', except that it will -- never block waiting for data to become available, instead it returns -- only whatever data is available. To wait for data to arrive before -- calling 'hGetBufNonBlocking', use 'hWaitForInput'. -- -- If the handle is a pipe or socket, and the writing end -- is closed, 'hGetBufNonBlocking' will behave as if EOF was reached. -- -- 'hGetBufNonBlocking' ignores the prevailing 'TextEncoding' and -- 'NewlineMode' on the 'Handle', and reads bytes directly. -- -- NOTE: on Windows, this function does not work correctly; it -- behaves identically to 'hGetBuf'. hGetBufNonBlocking :: Handle -> Ptr a -> Int -> IO Int hGetBufNonBlocking h ptr count | count == 0 = return 0 | count < 0 = illegalBufferSize h "hGetBufNonBlocking" count | otherwise = wantReadableHandle_ "hGetBufNonBlocking" h $ \ h_@Handle__{..} -> do flushCharReadBuffer h_ buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz } <- readIORef haByteBuffer if isEmptyBuffer buf then bufReadNBEmpty h_ buf (castPtr ptr) 0 count else bufReadNBNonEmpty h_ buf (castPtr ptr) 0 count bufReadNBEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int bufReadNBEmpty h_@Handle__{..} buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz } ptr so_far count | count > sz, Just fd <- cast haDevice = do m <- RawIO.readNonBlocking (fd::FD) ptr count case m of Nothing -> return so_far Just n -> return (so_far + n) | otherwise = do buf <- readIORef haByteBuffer (r,buf') <- Buffered.fillReadBuffer0 haDevice buf case r of Nothing -> return so_far Just 0 -> return so_far Just r -> do writeIORef haByteBuffer buf' bufReadNBNonEmpty h_ buf' ptr so_far (min count r) -- NOTE: new count is min count r -- so we will just copy the contents of the -- buffer in the recursive call, and not -- loop again. bufReadNBNonEmpty :: Handle__ -> Buffer Word8 -> Ptr Word8 -> Int -> Int -> IO Int bufReadNBNonEmpty h_@Handle__{..} buf@Buffer{ bufRaw=raw, bufR=w, bufL=r, bufSize=sz } ptr so_far count = do let avail = w - r if (count < avail) then do copyFromRawBuffer ptr raw r count writeIORef haByteBuffer buf{ bufL = r + count } return (so_far + count) else do copyFromRawBuffer ptr raw r avail let buf' = buf{ bufR=0, bufL=0 } writeIORef haByteBuffer buf' let remaining = count - avail so_far' = so_far + avail ptr' = ptr `plusPtr` avail if remaining == 0 then return so_far' else bufReadNBEmpty h_ buf' ptr' so_far' remaining -- --------------------------------------------------------------------------- -- memcpy wrappers copyToRawBuffer :: RawBuffer e -> Int -> Ptr e -> Int -> IO () copyToRawBuffer raw off ptr bytes = withRawBuffer raw $ \praw -> do _ <- memcpy (praw `plusPtr` off) ptr (fromIntegral bytes) return () copyFromRawBuffer :: Ptr e -> RawBuffer e -> Int -> Int -> IO () copyFromRawBuffer ptr raw off bytes = withRawBuffer raw $ \praw -> do _ <- memcpy ptr (praw `plusPtr` off) (fromIntegral bytes) return () foreign import ccall unsafe "memcpy" memcpy :: Ptr a -> Ptr a -> CSize -> IO (Ptr ()) ----------------------------------------------------------------------------- -- Internal Utils illegalBufferSize :: Handle -> String -> Int -> IO a illegalBufferSize handle fn sz = ioException (IOError (Just handle) InvalidArgument fn ("illegal buffer size " ++ showsPrec 9 sz []) Nothing Nothing)