-- | -- Module : Basement.Block -- License : BSD-style -- Maintainer : Haskell Foundation -- -- A block of memory that contains elements of a type, -- very similar to an unboxed array but with the key difference: -- -- * It doesn't have slicing capability (no cheap take or drop) -- * It consume less memory: 1 Offset, 1 CountOf -- * It's unpackable in any constructor -- * It uses unpinned memory by default -- {-# LANGUAGE MagicHash #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} module Basement.Block ( Block(..) , MutableBlock(..) -- * Properties , length -- * Lowlevel functions , unsafeThaw , unsafeFreeze , unsafeIndex , thaw , freeze , copy , unsafeCast , cast -- * safer api , empty , create , isPinned , isMutablePinned , singleton , replicate , index , map , foldl' , foldr , foldl1' , foldr1 , cons , snoc , uncons , unsnoc , sub , splitAt , revSplitAt , splitOn , break , breakEnd , span , elem , all , any , find , filter , reverse , sortBy , intersperse -- * Foreign interfaces , createFromPtr , unsafeCopyToPtr , withPtr ) where import GHC.Prim import GHC.Types import GHC.ST import qualified Data.List import Basement.Compat.Base import Data.Proxy import Basement.Compat.Primitive import Basement.NonEmpty import Basement.Types.OffsetSize import Basement.Monad import Basement.Exception import Basement.PrimType import qualified Basement.Block.Mutable as M import Basement.Block.Mutable (Block(..), MutableBlock(..), new, unsafeThaw, unsafeFreeze) import Basement.Block.Base import Basement.Numerical.Additive import Basement.Numerical.Subtractive import Basement.Numerical.Multiplicative import qualified Basement.Alg.Mutable as MutAlg import qualified Basement.Alg.Class as Alg import qualified Basement.Alg.PrimArray as Alg instance (PrimMonad prim, st ~ PrimState prim, PrimType ty) => Alg.RandomAccess (MutableBlock ty st) prim ty where read (MutableBlock mba) = primMbaRead mba write (MutableBlock mba) = primMbaWrite mba instance (PrimType ty) => Alg.Indexable (Block ty) ty where index (Block ba) = primBaIndex ba {-# INLINE index #-} instance Alg.Indexable (Block Word8) Word64 where index (Block ba) = primBaIndex ba {-# INLINE index #-} -- | Copy all the block content to the memory starting at the destination address unsafeCopyToPtr :: forall ty prim . PrimMonad prim => Block ty -- ^ the source block to copy -> Ptr ty -- ^ The destination address where the copy is going to start -> prim () unsafeCopyToPtr (Block blk) (Ptr p) = primitive $ \s1 -> (# copyByteArrayToAddr# blk 0# p (sizeofByteArray# blk) s1, () #) -- | Create a new array of size @n by settings each cells through the -- function @f. create :: forall ty . PrimType ty => CountOf ty -- ^ the size of the block (in element of ty) -> (Offset ty -> ty) -- ^ the function that set the value at the index -> Block ty -- ^ the array created create n initializer | n == 0 = mempty | otherwise = runST $ do mb <- new n M.iterSet initializer mb unsafeFreeze mb -- | Freeze a chunk of memory pointed, of specific size into a new unboxed array createFromPtr :: PrimType ty => Ptr ty -> CountOf ty -> IO (Block ty) createFromPtr p sz = do mb <- new sz M.copyFromPtr p mb 0 sz unsafeFreeze mb singleton :: PrimType ty => ty -> Block ty singleton ty = create 1 (const ty) replicate :: PrimType ty => CountOf ty -> ty -> Block ty replicate sz ty = create sz (const ty) -- | Thaw a Block into a MutableBlock -- -- the Block is not modified, instead a new Mutable Block is created -- and its content is copied to the mutable block thaw :: (PrimMonad prim, PrimType ty) => Block ty -> prim (MutableBlock ty (PrimState prim)) thaw array = do ma <- M.unsafeNew Unpinned (lengthBytes array) M.unsafeCopyBytesRO ma 0 array 0 (lengthBytes array) pure ma {-# INLINE thaw #-} -- | Freeze a MutableBlock into a Block, copying all the data -- -- If the data is modified in the mutable block after this call, then -- the immutable Block resulting is not impacted. freeze :: (PrimType ty, PrimMonad prim) => MutableBlock ty (PrimState prim) -> prim (Block ty) freeze ma = do ma' <- unsafeNew Unpinned len M.unsafeCopyBytes ma' 0 ma 0 len --M.copyAt ma' (Offset 0) ma (Offset 0) len unsafeFreeze ma' where len = M.mutableLengthBytes ma -- | Copy every cells of an existing Block to a new Block copy :: PrimType ty => Block ty -> Block ty copy array = runST (thaw array >>= unsafeFreeze) -- | Return the element at a specific index from an array. -- -- If the index @n is out of bounds, an error is raised. index :: PrimType ty => Block ty -> Offset ty -> ty index array n | isOutOfBound n len = outOfBound OOB_Index n len | otherwise = unsafeIndex array n where !len = length array {-# INLINE index #-} -- | Map all element 'a' from a block to a new block of 'b' map :: (PrimType a, PrimType b) => (a -> b) -> Block a -> Block b map f a = create lenB (\i -> f $ unsafeIndex a (offsetCast Proxy i)) where !lenB = sizeCast (Proxy :: Proxy (a -> b)) (length a) foldr :: PrimType ty => (ty -> a -> a) -> a -> Block ty -> a foldr f initialAcc vec = loop 0 where !len = length vec loop !i | i .==# len = initialAcc | otherwise = unsafeIndex vec i `f` loop (i+1) {-# SPECIALIZE [2] foldr :: (Word8 -> a -> a) -> a -> Block Word8 -> a #-} foldl' :: PrimType ty => (a -> ty -> a) -> a -> Block ty -> a foldl' f initialAcc vec = loop 0 initialAcc where !len = length vec loop !i !acc | i .==# len = acc | otherwise = loop (i+1) (f acc (unsafeIndex vec i)) {-# SPECIALIZE [2] foldl' :: (a -> Word8 -> a) -> a -> Block Word8 -> a #-} foldl1' :: PrimType ty => (ty -> ty -> ty) -> NonEmpty (Block ty) -> ty foldl1' f (NonEmpty arr) = loop 1 (unsafeIndex arr 0) where !len = length arr loop !i !acc | i .==# len = acc | otherwise = loop (i+1) (f acc (unsafeIndex arr i)) {-# SPECIALIZE [3] foldl1' :: (Word8 -> Word8 -> Word8) -> NonEmpty (Block Word8) -> Word8 #-} foldr1 :: PrimType ty => (ty -> ty -> ty) -> NonEmpty (Block ty) -> ty foldr1 f arr = let (initialAcc, rest) = revSplitAt 1 $ getNonEmpty arr in foldr f (unsafeIndex initialAcc 0) rest cons :: PrimType ty => ty -> Block ty -> Block ty cons e vec | len == 0 = singleton e | otherwise = runST $ do muv <- new (len + 1) M.unsafeCopyElementsRO muv 1 vec 0 len M.unsafeWrite muv 0 e unsafeFreeze muv where !len = length vec snoc :: PrimType ty => Block ty -> ty -> Block ty snoc vec e | len == 0 = singleton e | otherwise = runST $ do muv <- new (len + 1) M.unsafeCopyElementsRO muv 0 vec 0 len M.unsafeWrite muv (0 `offsetPlusE` len) e unsafeFreeze muv where !len = length vec sub :: PrimType ty => Block ty -> Offset ty -> Offset ty -> Block ty sub blk start end | start >= end' = mempty | otherwise = runST $ do dst <- new newLen M.unsafeCopyElementsRO dst 0 blk start newLen unsafeFreeze dst where newLen = end' - start end' = min (sizeAsOffset len) end !len = length blk uncons :: PrimType ty => Block ty -> Maybe (ty, Block ty) uncons vec | nbElems == 0 = Nothing | otherwise = Just (unsafeIndex vec 0, sub vec 1 (0 `offsetPlusE` nbElems)) where !nbElems = length vec unsnoc :: PrimType ty => Block ty -> Maybe (Block ty, ty) unsnoc vec = case length vec - 1 of Nothing -> Nothing Just offset -> Just (sub vec 0 lastElem, unsafeIndex vec lastElem) where !lastElem = 0 `offsetPlusE` offset splitAt :: PrimType ty => CountOf ty -> Block ty -> (Block ty, Block ty) splitAt nbElems blk | nbElems <= 0 = (mempty, blk) | Just nbTails <- length blk - nbElems, nbTails > 0 = runST $ do left <- new nbElems right <- new nbTails M.unsafeCopyElementsRO left 0 blk 0 nbElems M.unsafeCopyElementsRO right 0 blk (sizeAsOffset nbElems) nbTails (,) <$> unsafeFreeze left <*> unsafeFreeze right | otherwise = (blk, mempty) {-# SPECIALIZE [2] splitAt :: CountOf Word8 -> Block Word8 -> (Block Word8, Block Word8) #-} revSplitAt :: PrimType ty => CountOf ty -> Block ty -> (Block ty, Block ty) revSplitAt n blk | n <= 0 = (mempty, blk) | Just nbElems <- length blk - n = let (x, y) = splitAt nbElems blk in (y, x) | otherwise = (blk, mempty) break :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty) break predicate blk = findBreak 0 where !len = length blk findBreak !i | i .==# len = (blk, mempty) | predicate (unsafeIndex blk i) = splitAt (offsetAsSize i) blk | otherwise = findBreak (i + 1) {-# INLINE findBreak #-} {-# SPECIALIZE [2] break :: (Word8 -> Bool) -> Block Word8 -> (Block Word8, Block Word8) #-} breakEnd :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty) breakEnd predicate blk | k == sentinel = (blk, mempty) | otherwise = splitAt (offsetAsSize (k+1)) blk where !k = Alg.revFindIndexPredicate predicate blk 0 end !end = sizeAsOffset $ length blk {-# SPECIALIZE [2] breakEnd :: (Word8 -> Bool) -> Block Word8 -> (Block Word8, Block Word8) #-} span :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty) span p = break (not . p) elem :: PrimType ty => ty -> Block ty -> Bool elem v blk = loop 0 where !len = length blk loop !i | i .==# len = False | unsafeIndex blk i == v = True | otherwise = loop (i+1) {-# SPECIALIZE [2] elem :: Word8 -> Block Word8 -> Bool #-} all :: PrimType ty => (ty -> Bool) -> Block ty -> Bool all p blk = loop 0 where !len = length blk loop !i | i .==# len = True | p (unsafeIndex blk i) = loop (i+1) | otherwise = False {-# SPECIALIZE [2] all :: (Word8 -> Bool) -> Block Word8 -> Bool #-} any :: PrimType ty => (ty -> Bool) -> Block ty -> Bool any p blk = loop 0 where !len = length blk loop !i | i .==# len = False | p (unsafeIndex blk i) = True | otherwise = loop (i+1) {-# SPECIALIZE [2] any :: (Word8 -> Bool) -> Block Word8 -> Bool #-} splitOn :: PrimType ty => (ty -> Bool) -> Block ty -> [Block ty] splitOn predicate blk | len == 0 = [mempty] | otherwise = go 0 0 where !len = length blk go !prevIdx !idx | idx .==# len = [sub blk prevIdx idx] | otherwise = let e = unsafeIndex blk idx idx' = idx + 1 in if predicate e then sub blk prevIdx idx : go idx' idx' else go prevIdx idx' find :: PrimType ty => (ty -> Bool) -> Block ty -> Maybe ty find predicate vec = loop 0 where !len = length vec loop i | i .==# len = Nothing | otherwise = let e = unsafeIndex vec i in if predicate e then Just e else loop (i+1) filter :: PrimType ty => (ty -> Bool) -> Block ty -> Block ty filter predicate vec = fromList $ Data.List.filter predicate $ toList vec reverse :: forall ty . PrimType ty => Block ty -> Block ty reverse blk | len == 0 = mempty | otherwise = runST $ do mb <- new len go mb unsafeFreeze mb where !len = length blk !endOfs = 0 `offsetPlusE` len go :: MutableBlock ty s -> ST s () go mb = loop endOfs 0 where loop o i | i .==# len = pure () | otherwise = unsafeWrite mb o' (unsafeIndex blk i) >> loop o' (i+1) where o' = pred o sortBy :: PrimType ty => (ty -> ty -> Ordering) -> Block ty -> Block ty sortBy ford vec | len == 0 = mempty | otherwise = runST $ do mblock <- thaw vec MutAlg.inplaceSortBy ford 0 len mblock unsafeFreeze mblock where len = length vec {-# SPECIALIZE [2] sortBy :: (Word8 -> Word8 -> Ordering) -> Block Word8 -> Block Word8 #-} intersperse :: forall ty . PrimType ty => ty -> Block ty -> Block ty intersperse sep blk = case len - 1 of Nothing -> blk Just 0 -> blk Just size -> runST $ do mb <- new (len+size) go mb unsafeFreeze mb where !len = length blk go :: MutableBlock ty s -> ST s () go mb = loop 0 0 where loop !o !i | (i + 1) .==# len = unsafeWrite mb o (unsafeIndex blk i) | otherwise = do unsafeWrite mb o (unsafeIndex blk i) unsafeWrite mb (o+1) sep loop (o+2) (i+1) -- | Unsafely recast an UArray containing 'a' to an UArray containing 'b' -- -- The offset and size are converted from units of 'a' to units of 'b', -- but no check are performed to make sure this is compatible. -- -- use 'cast' if unsure. unsafeCast :: PrimType b => Block a -> Block b unsafeCast (Block ba) = Block ba -- | Cast a Block of 'a' to a Block of 'b' -- -- The requirement is that the size of type 'a' need to be a multiple or -- dividend of the size of type 'b'. -- -- If this requirement is not met, the InvalidRecast exception is thrown cast :: forall a b . (PrimType a, PrimType b) => Block a -> Block b cast blk@(Block ba) | aTypeSize == bTypeSize || bTypeSize == 1 = unsafeCast blk | missing == 0 = unsafeCast blk | otherwise = throw $ InvalidRecast (RecastSourceSize alen) (RecastDestinationSize $ alen + missing) where (CountOf alen) = lengthBytes blk aTypeSize = primSizeInBytes (Proxy :: Proxy a) bTypeSize@(CountOf bs) = primSizeInBytes (Proxy :: Proxy b) missing = alen `mod` bs