-- | -- Module : Basement.BoxedArray -- License : BSD-style -- Maintainer : Vincent Hanquez -- Stability : experimental -- Portability : portable -- -- Simple boxed array abstraction -- {-# LANGUAGE MagicHash #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} module Basement.BoxedArray ( Array , MArray , empty , length , mutableLength , copy , unsafeCopyAtRO , thaw , new , create , unsafeFreeze , unsafeThaw , freeze , unsafeWrite , unsafeRead , unsafeIndex , write , read , index , singleton , replicate , null , take , drop , splitAt , revTake , revDrop , revSplitAt , splitOn , sub , intersperse , span , spanEnd , break , breakEnd , mapFromUnboxed , mapToUnboxed , cons , snoc , uncons , unsnoc -- , findIndex , sortBy , filter , reverse , elem , find , foldl' , foldr , foldl1' , foldr1 , all , any , isPrefixOf , isSuffixOf , builderAppend , builderBuild , builderBuild_ ) where import GHC.Prim import GHC.Types import GHC.ST import Data.Proxy import Basement.Numerical.Additive import Basement.Numerical.Subtractive import Basement.NonEmpty import Basement.Compat.Base import qualified Basement.Alg.Class as Alg import qualified Basement.Alg.Mutable as Alg import Basement.Compat.MonadTrans import Basement.Compat.Semigroup import Basement.Types.OffsetSize import Basement.PrimType import Basement.NormalForm import Basement.Monad import Basement.UArray.Base (UArray) import qualified Basement.UArray.Base as UArray import Basement.Exception import Basement.MutableBuilder import qualified Basement.Compat.ExtList as List -- | Array of a data Array a = Array {-# UNPACK #-} !(Offset a) {-# UNPACK #-} !(CountOf a) (Array# a) deriving (Typeable) instance Data ty => Data (Array ty) where dataTypeOf _ = arrayType toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" arrayType :: DataType arrayType = mkNoRepType "Foundation.Array" instance NormalForm a => NormalForm (Array a) where toNormalForm arr = loop 0 where !sz = length arr loop !i | i .==# sz = () | otherwise = unsafeIndex arr i `seq` loop (i+1) -- | Mutable Array of a data MArray a st = MArray {-# UNPACK #-} !(Offset a) {-# UNPACK #-} !(CountOf a) (MutableArray# st a) deriving (Typeable) instance Functor Array where fmap = map instance Semigroup (Array a) where (<>) = append instance Monoid (Array a) where mempty = empty mappend = append mconcat = concat instance Show a => Show (Array a) where show v = show (toList v) instance Eq a => Eq (Array a) where (==) = equal instance Ord a => Ord (Array a) where compare = vCompare instance IsList (Array ty) where type Item (Array ty) = ty fromList = vFromList fromListN len = vFromListN (CountOf len) toList = vToList -- | return the numbers of elements in a mutable array mutableLength :: MArray ty st -> Int mutableLength (MArray _ (CountOf len) _) = len {-# INLINE mutableLength #-} -- | return the numbers of elements in a mutable array mutableLengthSize :: MArray ty st -> CountOf ty mutableLengthSize (MArray _ size _) = size {-# INLINE mutableLengthSize #-} -- | Return the element at a specific index from an array. -- -- If the index @n is out of bounds, an error is raised. index :: Array ty -> Offset ty -> ty index array n | isOutOfBound n len = outOfBound OOB_Index n len | otherwise = unsafeIndex array n where len = length array {-# INLINE index #-} -- | Return the element at a specific index from an array without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'index' if unsure. unsafeIndex :: Array ty -> Offset ty -> ty unsafeIndex (Array start _ a) ofs = primArrayIndex a (start+ofs) {-# INLINE unsafeIndex #-} -- | read a cell in a mutable array. -- -- If the index is out of bounds, an error is raised. read :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> prim ty read array n | isOutOfBound n len = primOutOfBound OOB_Read n len | otherwise = unsafeRead array n where len = mutableLengthSize array {-# INLINE read #-} -- | read from a cell in a mutable array without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'read' if unsure. unsafeRead :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> prim ty unsafeRead (MArray start _ ma) i = primMutableArrayRead ma (start + i) {-# INLINE unsafeRead #-} -- | Write to a cell in a mutable array. -- -- If the index is out of bounds, an error is raised. write :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> ty -> prim () write array n val | isOutOfBound n len = primOutOfBound OOB_Write n len | otherwise = unsafeWrite array n val where len = mutableLengthSize array {-# INLINE write #-} -- | write to a cell in a mutable array without bounds checking. -- -- Writing with invalid bounds will corrupt memory and your program will -- become unreliable. use 'write' if unsure. unsafeWrite :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> ty -> prim () unsafeWrite (MArray start _ ma) ofs v = primMutableArrayWrite ma (start + ofs) v {-# INLINE unsafeWrite #-} -- | Freeze a mutable array into an array. -- -- the MArray must not be changed after freezing. unsafeFreeze :: PrimMonad prim => MArray ty (PrimState prim) -> prim (Array ty) unsafeFreeze (MArray ofs sz ma) = primitive $ \s1 -> case unsafeFreezeArray# ma s1 of (# s2, a #) -> (# s2, Array ofs sz a #) {-# INLINE unsafeFreeze #-} -- | Thaw an immutable array. -- -- The Array must not be used after thawing. unsafeThaw :: PrimMonad prim => Array ty -> prim (MArray ty (PrimState prim)) unsafeThaw (Array ofs sz a) = primitive $ \st -> (# st, MArray ofs sz (unsafeCoerce# a) #) {-# INLINE unsafeThaw #-} -- | Thaw an array to a mutable array. -- -- the array is not modified, instead a new mutable array is created -- and every values is copied, before returning the mutable array. thaw :: PrimMonad prim => Array ty -> prim (MArray ty (PrimState prim)) thaw array = do m <- new (length array) unsafeCopyAtRO m (Offset 0) array (Offset 0) (length array) pure m {-# INLINE thaw #-} freeze :: PrimMonad prim => MArray ty (PrimState prim) -> prim (Array ty) freeze marray = do m <- new sz copyAt m (Offset 0) marray (Offset 0) sz unsafeFreeze m where sz = mutableLengthSize marray -- | Copy the element to a new element array copy :: Array ty -> Array ty copy a = runST (unsafeThaw a >>= freeze) -- | Copy a number of elements from an array to another array with offsets copyAt :: PrimMonad prim => MArray ty (PrimState prim) -- ^ destination array -> Offset ty -- ^ offset at destination -> MArray ty (PrimState prim) -- ^ source array -> Offset ty -- ^ offset at source -> CountOf ty -- ^ number of elements to copy -> prim () copyAt dst od src os n = loop od os where -- !endIndex = os `offsetPlusE` n loop d s | s .==# n = pure () | otherwise = unsafeRead src s >>= unsafeWrite dst d >> loop (d+1) (s+1) -- | Copy @n@ sequential elements from the specified offset in a source array -- to the specified position in a destination array. -- -- This function does not check bounds. Accessing invalid memory can return -- unpredictable and invalid values. unsafeCopyAtRO :: PrimMonad prim => MArray ty (PrimState prim) -- ^ destination array -> Offset ty -- ^ offset at destination -> Array ty -- ^ source array -> Offset ty -- ^ offset at source -> CountOf ty -- ^ number of elements to copy -> prim () unsafeCopyAtRO (MArray (Offset (I# dstart)) _ da) (Offset (I# dofs)) (Array (Offset (I# sstart)) _ sa) (Offset (I# sofs)) (CountOf (I# n)) = primitive $ \st -> (# copyArray# sa (sstart +# sofs) da (dstart +# dofs) n st, () #) -- | Allocate a new array with a fill function that has access to the elements of -- the source array. unsafeCopyFrom :: Array ty -- ^ Source array -> CountOf ty -- ^ Length of the destination array -> (Array ty -> Offset ty -> MArray ty s -> ST s ()) -- ^ Function called for each element in the source array -> ST s (Array ty) -- ^ Returns the filled new array unsafeCopyFrom v' newLen f = new newLen >>= fill (Offset 0) f >>= unsafeFreeze where len = length v' endIdx = Offset 0 `offsetPlusE` len fill i f' r' | i == endIdx = pure r' | otherwise = do f' v' i r' fill (i + Offset 1) f' r' -- | Create a new mutable array of size @n. -- -- all the cells are uninitialized and could contains invalid values. -- -- All mutable arrays are allocated on a 64 bits aligned addresses -- and always contains a number of bytes multiples of 64 bits. new :: PrimMonad prim => CountOf ty -> prim (MArray ty (PrimState prim)) new sz@(CountOf (I# n)) = primitive $ \s1 -> case newArray# n (error "vector: internal error uninitialized vector") s1 of (# s2, ma #) -> (# s2, MArray (Offset 0) sz ma #) -- | Create a new array of size @n by settings each cells through the -- function @f. create :: forall ty . CountOf ty -- ^ the size of the array -> (Offset ty -> ty) -- ^ the function that set the value at the index -> Array ty -- ^ the array created create n initializer = runST (new n >>= iter initializer) where iter :: PrimMonad prim => (Offset ty -> ty) -> MArray ty (PrimState prim) -> prim (Array ty) iter f ma = loop 0 where loop s | s .==# n = unsafeFreeze ma | otherwise = unsafeWrite ma s (f s) >> loop (s+1) {-# INLINE loop #-} {-# INLINE iter #-} ----------------------------------------------------------------------- -- higher level collection implementation ----------------------------------------------------------------------- equal :: Eq a => Array a -> Array a -> Bool equal a b = (len == length b) && eachEqual 0 where len = length a eachEqual !i | i .==# len = True | unsafeIndex a i /= unsafeIndex b i = False | otherwise = eachEqual (i+1) vCompare :: Ord a => Array a -> Array a -> Ordering vCompare a b = loop 0 where !la = length a !lb = length b loop n | n .==# la = if la == lb then EQ else LT | n .==# lb = GT | otherwise = case unsafeIndex a n `compare` unsafeIndex b n of EQ -> loop (n+1) r -> r empty :: Array a empty = runST $ onNewArray 0 (\_ s -> s) length :: Array a -> CountOf a length (Array _ sz _) = sz vFromList :: [a] -> Array a vFromList l = runST (new len >>= loop 0 l) where len = List.length l loop _ [] ma = unsafeFreeze ma loop i (x:xs) ma = unsafeWrite ma i x >> loop (i+1) xs ma -- | just like vFromList but with a length hint. -- -- The resulting array is guarantee to have been allocated to the length -- specified, but the slice might point to the initialized cells only in -- case the length is bigger than the list. -- -- If the length is too small, then the list is truncated. -- vFromListN :: forall a . CountOf a -> [a] -> Array a vFromListN len l = runST $ do ma <- new len sz <- loop 0 l ma unsafeFreezeShrink ma sz where -- TODO rewrite without ma as parameter loop :: Offset a -> [a] -> MArray a s -> ST s (CountOf a) loop i [] _ = return (offsetAsSize i) loop i (x:xs) ma | i .==# len = return (offsetAsSize i) | otherwise = unsafeWrite ma i x >> loop (i+1) xs ma vToList :: Array a -> [a] vToList v | len == 0 = [] | otherwise = fmap (unsafeIndex v) [0..sizeLastOffset len] where !len = length v -- | Append 2 arrays together by creating a new bigger array append :: Array ty -> Array ty -> Array ty append a b = runST $ do r <- new (la+lb) unsafeCopyAtRO r (Offset 0) a (Offset 0) la unsafeCopyAtRO r (sizeAsOffset la) b (Offset 0) lb unsafeFreeze r where la = length a lb = length b concat :: [Array ty] -> Array ty concat l = runST $ do r <- new (mconcat $ fmap length l) loop r (Offset 0) l unsafeFreeze r where loop _ _ [] = pure () loop r i (x:xs) = do unsafeCopyAtRO r i x (Offset 0) lx loop r (i `offsetPlusE` lx) xs where lx = length x {- modify :: PrimMonad m => Array a -> (MArray (PrimState m) a -> m ()) -> m (Array a) modify (Array a) f = primitive $ \st -> do case thawArray# a 0# (sizeofArray# a) st of (# st2, mv #) -> case internal_ (f $ MArray mv) st2 of st3 -> case unsafeFreezeArray# mv st3 of (# st4, a' #) -> (# st4, Array a' #) -} ----------------------------------------------------------------------- -- helpers onNewArray :: PrimMonad m => Int -> (MutableArray# (PrimState m) a -> State# (PrimState m) -> State# (PrimState m)) -> m (Array a) onNewArray len@(I# len#) f = primitive $ \st -> do case newArray# len# (error "onArray") st of { (# st2, mv #) -> case f mv st2 of { st3 -> case unsafeFreezeArray# mv st3 of { (# st4, a #) -> (# st4, Array (Offset 0) (CountOf len) a #) }}} ----------------------------------------------------------------------- null :: Array ty -> Bool null = (==) 0 . length take :: CountOf ty -> Array ty -> Array ty take nbElems a@(Array start len arr) | nbElems <= 0 = empty | n == len = a | otherwise = Array start n arr where n = min nbElems len drop :: CountOf ty -> Array ty -> Array ty drop nbElems a@(Array start len arr) | nbElems <= 0 = a | Just nbTails <- len - nbElems, nbTails > 0 = Array (start `offsetPlusE` nbElems) nbTails arr | otherwise = empty splitAt :: CountOf ty -> Array ty -> (Array ty, Array ty) splitAt nbElems a@(Array start len arr) | nbElems <= 0 = (empty, a) | Just nbTails <- len - nbElems, nbTails > 0 = ( Array start nbElems arr , Array (start `offsetPlusE` nbElems) nbTails arr) | otherwise = (a, empty) -- inverse a CountOf that is specified from the end (e.g. take n elements from the end) countFromStart :: Array ty -> CountOf ty -> CountOf ty countFromStart v sz@(CountOf sz') | sz >= len = CountOf 0 | otherwise = CountOf (len' - sz') where len@(CountOf len') = length v revTake :: CountOf ty -> Array ty -> Array ty revTake n v = drop (countFromStart v n) v revDrop :: CountOf ty -> Array ty -> Array ty revDrop n v = take (countFromStart v n) v revSplitAt :: CountOf ty -> Array ty -> (Array ty, Array ty) revSplitAt n v = (drop idx v, take idx v) where idx = countFromStart v n splitOn :: (ty -> Bool) -> Array ty -> [Array ty] splitOn predicate vec | len == CountOf 0 = [mempty] | otherwise = loop (Offset 0) (Offset 0) where !len = length vec !endIdx = Offset 0 `offsetPlusE` len loop prevIdx idx | idx == endIdx = [sub vec prevIdx idx] | otherwise = let e = unsafeIndex vec idx idx' = idx + 1 in if predicate e then sub vec prevIdx idx : loop idx' idx' else loop prevIdx idx' sub :: Array ty -> Offset ty -> Offset ty -> Array ty sub (Array start len a) startIdx expectedEndIdx | startIdx == endIdx = empty | otherwise = Array (start + startIdx) newLen a where newLen = endIdx - startIdx endIdx = min expectedEndIdx (sizeAsOffset len) break :: (ty -> Bool) -> Array ty -> (Array ty, Array ty) break predicate v = findBreak 0 where !len = length v findBreak i | i .==# len = (v, empty) | otherwise = if predicate (unsafeIndex v i) then splitAt (offsetAsSize i) v else findBreak (i+1) breakEnd :: (ty -> Bool) -> Array ty -> (Array ty, Array ty) breakEnd predicate v = findBreak (sizeAsOffset len) where !len = length v findBreak !i | i == 0 = (v, empty) | predicate e = splitAt (offsetAsSize i) v | otherwise = findBreak i' where e = unsafeIndex v i' i' = i `offsetSub` 1 intersperse :: ty -> Array ty -> Array ty intersperse sep v = case len - 1 of Nothing -> v Just 0 -> v Just more -> runST $ unsafeCopyFrom v (len + more) (go (Offset 0 `offsetPlusE` more) sep) where len = length v -- terminate 1 before the end go :: Offset ty -> ty -> Array ty -> Offset ty -> MArray ty s -> ST s () go endI sep' oldV oldI newV | oldI == endI = unsafeWrite newV dst e | otherwise = do unsafeWrite newV dst e unsafeWrite newV (dst + 1) sep' where e = unsafeIndex oldV oldI dst = oldI + oldI span :: (ty -> Bool) -> Array ty -> (Array ty, Array ty) span p = break (not . p) spanEnd :: (ty -> Bool) -> Array ty -> (Array ty, Array ty) spanEnd p = breakEnd (not . p) map :: (a -> b) -> Array a -> Array b map f a = create (sizeCast Proxy $ length a) (\i -> f $ unsafeIndex a (offsetCast Proxy i)) mapFromUnboxed :: PrimType a => (a -> b) -> UArray a -> Array b mapFromUnboxed f arr = vFromListN (sizeCast Proxy $ UArray.length arr) . fmap f . toList $ arr mapToUnboxed :: PrimType b => (a -> b) -> Array a -> UArray b mapToUnboxed f arr = UArray.vFromListN (sizeCast Proxy $ length arr) . fmap f . toList $ arr {- mapIndex :: (Int -> a -> b) -> Array a -> Array b mapIndex f a = create (length a) (\i -> f i $ unsafeIndex a i) -} singleton :: ty -> Array ty singleton e = runST $ do a <- new 1 unsafeWrite a 0 e unsafeFreeze a replicate :: CountOf ty -> ty -> Array ty replicate sz ty = create sz (const ty) cons :: ty -> Array ty -> Array ty cons e vec | len == CountOf 0 = singleton e | otherwise = runST $ do mv <- new (len + CountOf 1) unsafeWrite mv 0 e unsafeCopyAtRO mv (Offset 1) vec (Offset 0) len unsafeFreeze mv where !len = length vec snoc :: Array ty -> ty -> Array ty snoc vec e | len == 0 = singleton e | otherwise = runST $ do mv <- new (len + 1) unsafeCopyAtRO mv 0 vec 0 len unsafeWrite mv (sizeAsOffset len) e unsafeFreeze mv where !len = length vec uncons :: Array ty -> Maybe (ty, Array ty) uncons vec | len == 0 = Nothing | otherwise = Just (unsafeIndex vec 0, drop 1 vec) where !len = length vec unsnoc :: Array ty -> Maybe (Array ty, ty) unsnoc vec = case len - 1 of Nothing -> Nothing Just newLen -> Just (take newLen vec, unsafeIndex vec (sizeLastOffset len)) where !len = length vec elem :: Eq ty => ty -> Array ty -> Bool elem !ty arr = loop 0 where !sz = length arr loop !i | i .==# sz = False | t == ty = True | otherwise = loop (i+1) where t = unsafeIndex arr i find :: (ty -> Bool) -> Array ty -> Maybe ty find predicate vec = loop 0 where !len = length vec loop i | i .==# len = Nothing | otherwise = let e = unsafeIndex vec i in if predicate e then Just e else loop (i+1) instance (PrimMonad prim, st ~ PrimState prim) => Alg.RandomAccess (MArray ty st) prim ty where read (MArray _ _ mba) = primMutableArrayRead mba write (MArray _ _ mba) = primMutableArrayWrite mba sortBy :: forall ty . (ty -> ty -> Ordering) -> Array ty -> Array ty sortBy xford vec | len == 0 = empty | otherwise = runST (thaw vec >>= doSort xford) where len = length vec doSort :: PrimMonad prim => (ty -> ty -> Ordering) -> MArray ty (PrimState prim) -> prim (Array ty) doSort ford ma = Alg.inplaceSortBy ford 0 len ma >> unsafeFreeze ma filter :: forall ty . (ty -> Bool) -> Array ty -> Array ty filter predicate vec = runST (new len >>= copyFilterFreeze predicate (unsafeIndex vec)) where !len = length vec copyFilterFreeze :: PrimMonad prim => (ty -> Bool) -> (Offset ty -> ty) -> MArray ty (PrimState prim) -> prim (Array ty) copyFilterFreeze predi getVec mvec = loop (Offset 0) (Offset 0) >>= freezeUntilIndex mvec where loop d s | s .==# len = pure d | predi v = unsafeWrite mvec d v >> loop (d+1) (s+1) | otherwise = loop d (s+1) where v = getVec s freezeUntilIndex :: PrimMonad prim => MArray ty (PrimState prim) -> Offset ty -> prim (Array ty) freezeUntilIndex mvec d = do m <- new (offsetAsSize d) copyAt m (Offset 0) mvec (Offset 0) (offsetAsSize d) unsafeFreeze m unsafeFreezeShrink :: PrimMonad prim => MArray ty (PrimState prim) -> CountOf ty -> prim (Array ty) unsafeFreezeShrink (MArray start _ ma) n = unsafeFreeze (MArray start n ma) reverse :: Array ty -> Array ty reverse a = create len toEnd where len@(CountOf s) = length a toEnd (Offset i) = unsafeIndex a (Offset (s - 1 - i)) foldr :: (ty -> a -> a) -> a -> Array ty -> a foldr f initialAcc vec = loop 0 where len = length vec loop !i | i .==# len = initialAcc | otherwise = unsafeIndex vec i `f` loop (i+1) foldl' :: (a -> ty -> a) -> a -> Array ty -> a foldl' f initialAcc vec = loop 0 initialAcc where len = length vec loop !i !acc | i .==# len = acc | otherwise = loop (i+1) (f acc (unsafeIndex vec i)) foldl1' :: (ty -> ty -> ty) -> NonEmpty (Array ty) -> ty foldl1' f arr = let (initialAcc, rest) = splitAt 1 $ getNonEmpty arr in foldl' f (unsafeIndex initialAcc 0) rest foldr1 :: (ty -> ty -> ty) -> NonEmpty (Array ty) -> ty foldr1 f arr = let (initialAcc, rest) = revSplitAt 1 $ getNonEmpty arr in foldr f (unsafeIndex initialAcc 0) rest all :: (ty -> Bool) -> Array ty -> Bool all p ba = loop 0 where len = length ba loop !i | i .==# len = True | not $ p (unsafeIndex ba i) = False | otherwise = loop (i + 1) any :: (ty -> Bool) -> Array ty -> Bool any p ba = loop 0 where len = length ba loop !i | i .==# len = False | p (unsafeIndex ba i) = True | otherwise = loop (i + 1) isPrefixOf :: Eq ty => Array ty -> Array ty -> Bool isPrefixOf pre arr | pLen > pArr = False | otherwise = pre == take pLen arr where !pLen = length pre !pArr = length arr isSuffixOf :: Eq ty => Array ty -> Array ty -> Bool isSuffixOf suffix arr | pLen > pArr = False | otherwise = suffix == revTake pLen arr where !pLen = length suffix !pArr = length arr builderAppend :: PrimMonad state => ty -> Builder (Array ty) (MArray ty) ty state err () builderAppend v = Builder $ State $ \(i, st, e) -> if i .==# chunkSize st then do cur <- unsafeFreeze (curChunk st) newChunk <- new (chunkSize st) unsafeWrite newChunk 0 v pure ((), (Offset 1, st { prevChunks = cur : prevChunks st , prevChunksSize = chunkSize st + prevChunksSize st , curChunk = newChunk }, e)) else do unsafeWrite (curChunk st) i v pure ((), (i+1, st, e)) builderBuild :: PrimMonad m => Int -> Builder (Array ty) (MArray ty) ty m err () -> m (Either err (Array ty)) builderBuild sizeChunksI ab | sizeChunksI <= 0 = builderBuild 64 ab | otherwise = do first <- new sizeChunks (i, st, e) <- snd <$> runState (runBuilder ab) (Offset 0, BuildingState [] (CountOf 0) first sizeChunks, Nothing) case e of Just err -> pure (Left err) Nothing -> do cur <- unsafeFreezeShrink (curChunk st) (offsetAsSize i) -- Build final array let totalSize = prevChunksSize st + offsetAsSize i bytes <- new totalSize >>= fillFromEnd totalSize (cur : prevChunks st) >>= unsafeFreeze pure (Right bytes) where sizeChunks = CountOf sizeChunksI fillFromEnd _ [] mua = pure mua fillFromEnd !end (x:xs) mua = do let sz = length x let start = end `sizeSub` sz unsafeCopyAtRO mua (sizeAsOffset start) x (Offset 0) sz fillFromEnd start xs mua builderBuild_ :: PrimMonad m => Int -> Builder (Array ty) (MArray ty) ty m () () -> m (Array ty) builderBuild_ sizeChunksI ab = either (\() -> internalError "impossible output") id <$> builderBuild sizeChunksI ab