{-# LANGUAGE MagicHash #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UnboxedTuples #-} module Basement.Block.Base ( Block(..) , MutableBlock(..) -- * Basic accessor , unsafeNew , unsafeThaw , unsafeFreeze , unsafeCopyElements , unsafeCopyElementsRO , unsafeCopyBytes , unsafeCopyBytesRO , unsafeRead , unsafeWrite , unsafeIndex -- * Properties , length , lengthBytes , isPinned , isMutablePinned , mutableLength , mutableLengthBytes -- * Other methods , mutableEmpty , new , newPinned , withPtr , withMutablePtr , withMutablePtrHint , mutableWithPtr ) where import GHC.Prim import GHC.Types import GHC.ST import GHC.IO import qualified Data.List import Basement.Compat.Base import Data.Proxy import Basement.Compat.Primitive import Basement.Compat.Semigroup import Basement.Bindings.Memory (sysHsMemcmpBaBa) import Basement.Types.OffsetSize import Basement.Monad import Basement.NormalForm import Basement.Numerical.Additive import Basement.PrimType -- | A block of memory containing unpacked bytes representing values of type 'ty' data Block ty = Block ByteArray# deriving (Typeable) instance Data ty => Data (Block ty) where dataTypeOf _ = blockType toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" blockType :: DataType blockType = mkNoRepType "Foundation.Block" instance NormalForm (Block ty) where toNormalForm (Block !_) = () instance (PrimType ty, Show ty) => Show (Block ty) where show v = show (toList v) instance (PrimType ty, Eq ty) => Eq (Block ty) where {-# SPECIALIZE instance Eq (Block Word8) #-} (==) = equal instance (PrimType ty, Ord ty) => Ord (Block ty) where compare = internalCompare instance PrimType ty => Semigroup (Block ty) where (<>) = append instance PrimType ty => Monoid (Block ty) where mempty = empty mappend = append mconcat = concat instance PrimType ty => IsList (Block ty) where type Item (Block ty) = ty fromList = internalFromList toList = internalToList -- | A Mutable block of memory containing unpacked bytes representing values of type 'ty' data MutableBlock ty st = MutableBlock (MutableByteArray# st) isPinned :: Block ty -> PinnedStatus isPinned (Block ba) = toPinnedStatus# (compatIsByteArrayPinned# ba) isMutablePinned :: MutableBlock s ty -> PinnedStatus isMutablePinned (MutableBlock mba) = toPinnedStatus# (compatIsMutableByteArrayPinned# mba) length :: forall ty . PrimType ty => Block ty -> CountOf ty length (Block ba) = case primShiftToBytes (Proxy :: Proxy ty) of 0 -> CountOf (I# (sizeofByteArray# ba)) (I# szBits) -> CountOf (I# (uncheckedIShiftRL# (sizeofByteArray# ba) szBits)) {-# INLINE[1] length #-} {-# SPECIALIZE [2] length :: Block Word8 -> CountOf Word8 #-} lengthBytes :: Block ty -> CountOf Word8 lengthBytes (Block ba) = CountOf (I# (sizeofByteArray# ba)) {-# INLINE[1] lengthBytes #-} -- | Return the length of a Mutable Block -- -- note: we don't allow resizing yet, so this can remain a pure function mutableLength :: forall ty st . PrimType ty => MutableBlock ty st -> CountOf ty mutableLength mb = sizeRecast $ mutableLengthBytes mb {-# INLINE[1] mutableLength #-} mutableLengthBytes :: MutableBlock ty st -> CountOf Word8 mutableLengthBytes (MutableBlock mba) = CountOf (I# (sizeofMutableByteArray# mba)) {-# INLINE[1] mutableLengthBytes #-} -- | Create an empty block of memory empty :: Block ty empty = Block ba where !(Block ba) = empty_ empty_ :: Block () empty_ = runST $ primitive $ \s1 -> case newByteArray# 0# s1 of { (# s2, mba #) -> case unsafeFreezeByteArray# mba s2 of { (# s3, ba #) -> (# s3, Block ba #) }} mutableEmpty :: PrimMonad prim => prim (MutableBlock ty (PrimState prim)) mutableEmpty = primitive $ \s1 -> case newByteArray# 0# s1 of { (# s2, mba #) -> (# s2, MutableBlock mba #) } -- | Return the element at a specific index from an array without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'index' if unsure. unsafeIndex :: forall ty . PrimType ty => Block ty -> Offset ty -> ty unsafeIndex (Block ba) n = primBaIndex ba n {-# SPECIALIZE unsafeIndex :: Block Word8 -> Offset Word8 -> Word8 #-} {-# INLINE unsafeIndex #-} -- | make a block from a list of elements. internalFromList :: PrimType ty => [ty] -> Block ty internalFromList l = runST $ do ma <- new (CountOf len) iter azero l $ \i x -> unsafeWrite ma i x unsafeFreeze ma where len = Data.List.length l iter _ [] _ = return () iter !i (x:xs) z = z i x >> iter (i+1) xs z -- | transform a block to a list. internalToList :: forall ty . PrimType ty => Block ty -> [ty] internalToList blk@(Block ba) | len == azero = [] | otherwise = loop azero where !len = length blk loop !i | i .==# len = [] | otherwise = primBaIndex ba i : loop (i+1) -- | Check if two blocks are identical equal :: (PrimType ty, Eq ty) => Block ty -> Block ty -> Bool equal a b | la /= lb = False | otherwise = loop azero where !la = lengthBytes a !lb = lengthBytes b lat = length a loop !n | n .==# lat = True | otherwise = (unsafeIndex a n == unsafeIndex b n) && loop (n+o1) o1 = Offset (I# 1#) {-# RULES "Block/Eq/Word8" [3] forall (a :: Block Word8) b . equal a b = equalMemcmp a b #-} {-# INLINEABLE [2] equal #-} -- {-# SPECIALIZE equal :: Block Word8 -> Block Word8 -> Bool #-} equalMemcmp :: PrimMemoryComparable ty => Block ty -> Block ty -> Bool equalMemcmp b1@(Block a) b2@(Block b) | la /= lb = False | otherwise = unsafeDupablePerformIO (sysHsMemcmpBaBa a 0 b 0 la) == 0 where la = lengthBytes b1 lb = lengthBytes b2 {-# SPECIALIZE equalMemcmp :: Block Word8 -> Block Word8 -> Bool #-} -- | Compare 2 blocks internalCompare :: (Ord ty, PrimType ty) => Block ty -> Block ty -> Ordering internalCompare a b = loop azero where !la = length a !lb = length b !end = sizeAsOffset (min la lb) loop !n | n == end = la `compare` lb | v1 == v2 = loop (n + Offset (I# 1#)) | otherwise = v1 `compare` v2 where v1 = unsafeIndex a n v2 = unsafeIndex b n {-# RULES "Block/Ord/Word8" [3] forall (a :: Block Word8) b . internalCompare a b = compareMemcmp a b #-} {-# NOINLINE internalCompare #-} compareMemcmp :: PrimMemoryComparable ty => Block ty -> Block ty -> Ordering compareMemcmp b1@(Block a) b2@(Block b) = case unsafeDupablePerformIO (sysHsMemcmpBaBa a 0 b 0 sz) of 0 -> la `compare` lb n | n > 0 -> GT | otherwise -> LT where la = lengthBytes b1 lb = lengthBytes b2 sz = min la lb {-# SPECIALIZE [3] compareMemcmp :: Block Word8 -> Block Word8 -> Ordering #-} -- | Append 2 blocks together by creating a new bigger block append :: Block ty -> Block ty -> Block ty append a b | la == azero = b | lb == azero = a | otherwise = runST $ do r <- unsafeNew Unpinned (la+lb) unsafeCopyBytesRO r 0 a 0 la unsafeCopyBytesRO r (sizeAsOffset la) b 0 lb unsafeFreeze r where !la = lengthBytes a !lb = lengthBytes b concat :: [Block ty] -> Block ty concat [] = empty concat l = case filterAndSum 0 [] l of (_,[]) -> empty (_,[x]) -> x (totalLen,chunks) -> runST $ do r <- unsafeNew Unpinned totalLen doCopy r 0 chunks unsafeFreeze r where -- TODO would go faster not to reverse but pack from the end instead filterAndSum !totalLen acc [] = (totalLen, Data.List.reverse acc) filterAndSum !totalLen acc (x:xs) | len == 0 = filterAndSum totalLen acc xs | otherwise = filterAndSum (len+totalLen) (x:acc) xs where len = lengthBytes x doCopy _ _ [] = return () doCopy r i (x:xs) = do unsafeCopyBytesRO r i x 0 lx doCopy r (i `offsetPlusE` lx) xs where !lx = lengthBytes x -- | Freeze a mutable block into a block. -- -- If the mutable block is still use after freeze, -- then the modification will be reflected in an unexpected -- way in the Block. unsafeFreeze :: PrimMonad prim => MutableBlock ty (PrimState prim) -> prim (Block ty) unsafeFreeze (MutableBlock mba) = primitive $ \s1 -> case unsafeFreezeByteArray# mba s1 of (# s2, ba #) -> (# s2, Block ba #) {-# INLINE unsafeFreeze #-} -- | Thaw an immutable block. -- -- If the immutable block is modified, then the original immutable block will -- be modified too, but lead to unexpected results when querying unsafeThaw :: (PrimType ty, PrimMonad prim) => Block ty -> prim (MutableBlock ty (PrimState prim)) unsafeThaw (Block ba) = primitive $ \st -> (# st, MutableBlock (unsafeCoerce# ba) #) -- | Create a new mutable block of a specific size in bytes. -- -- Note that no checks are made to see if the size in bytes is compatible with the size -- of the underlaying element 'ty' in the block. -- -- use 'new' if unsure unsafeNew :: PrimMonad prim => PinnedStatus -> CountOf Word8 -> prim (MutableBlock ty (PrimState prim)) unsafeNew pinSt (CountOf (I# bytes)) = case pinSt of Unpinned -> primitive $ \s1 -> case newByteArray# bytes s1 of { (# s2, mba #) -> (# s2, MutableBlock mba #) } _ -> primitive $ \s1 -> case newAlignedPinnedByteArray# bytes 8# s1 of { (# s2, mba #) -> (# s2, MutableBlock mba #) } -- | Create a new unpinned mutable block of a specific N size of 'ty' elements -- -- If the size exceeds a GHC-defined threshold, then the memory will be -- pinned. To be certain about pinning status with small size, use 'newPinned' new :: forall prim ty . (PrimMonad prim, PrimType ty) => CountOf ty -> prim (MutableBlock ty (PrimState prim)) new n = unsafeNew Unpinned (sizeOfE (primSizeInBytes (Proxy :: Proxy ty)) n) -- | Create a new pinned mutable block of a specific N size of 'ty' elements newPinned :: forall prim ty . (PrimMonad prim, PrimType ty) => CountOf ty -> prim (MutableBlock ty (PrimState prim)) newPinned n = unsafeNew Pinned (sizeOfE (primSizeInBytes (Proxy :: Proxy ty)) n) -- | Copy a number of elements from an array to another array with offsets unsafeCopyElements :: forall prim ty . (PrimMonad prim, PrimType ty) => MutableBlock ty (PrimState prim) -- ^ destination mutable block -> Offset ty -- ^ offset at destination -> MutableBlock ty (PrimState prim) -- ^ source mutable block -> Offset ty -- ^ offset at source -> CountOf ty -- ^ number of elements to copy -> prim () unsafeCopyElements dstMb destOffset srcMb srcOffset n = -- (MutableBlock dstMba) ed (MutableBlock srcBa) es n = unsafeCopyBytes dstMb (offsetOfE sz destOffset) srcMb (offsetOfE sz srcOffset) (sizeOfE sz n) where !sz = primSizeInBytes (Proxy :: Proxy ty) unsafeCopyElementsRO :: forall prim ty . (PrimMonad prim, PrimType ty) => MutableBlock ty (PrimState prim) -- ^ destination mutable block -> Offset ty -- ^ offset at destination -> Block ty -- ^ source block -> Offset ty -- ^ offset at source -> CountOf ty -- ^ number of elements to copy -> prim () unsafeCopyElementsRO dstMb destOffset srcMb srcOffset n = unsafeCopyBytesRO dstMb (offsetOfE sz destOffset) srcMb (offsetOfE sz srcOffset) (sizeOfE sz n) where !sz = primSizeInBytes (Proxy :: Proxy ty) -- | Copy a number of bytes from a MutableBlock to another MutableBlock with specific byte offsets unsafeCopyBytes :: forall prim ty . PrimMonad prim => MutableBlock ty (PrimState prim) -- ^ destination mutable block -> Offset Word8 -- ^ offset at destination -> MutableBlock ty (PrimState prim) -- ^ source mutable block -> Offset Word8 -- ^ offset at source -> CountOf Word8 -- ^ number of elements to copy -> prim () unsafeCopyBytes (MutableBlock dstMba) (Offset (I# d)) (MutableBlock srcBa) (Offset (I# s)) (CountOf (I# n)) = primitive $ \st -> (# copyMutableByteArray# srcBa s dstMba d n st, () #) {-# INLINE unsafeCopyBytes #-} -- | Copy a number of bytes from a Block to a MutableBlock with specific byte offsets unsafeCopyBytesRO :: forall prim ty . PrimMonad prim => MutableBlock ty (PrimState prim) -- ^ destination mutable block -> Offset Word8 -- ^ offset at destination -> Block ty -- ^ source block -> Offset Word8 -- ^ offset at source -> CountOf Word8 -- ^ number of elements to copy -> prim () unsafeCopyBytesRO (MutableBlock dstMba) (Offset (I# d)) (Block srcBa) (Offset (I# s)) (CountOf (I# n)) = primitive $ \st -> (# copyByteArray# srcBa s dstMba d n st, () #) {-# INLINE unsafeCopyBytesRO #-} -- | read from a cell in a mutable block without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'read' if unsure. unsafeRead :: (PrimMonad prim, PrimType ty) => MutableBlock ty (PrimState prim) -> Offset ty -> prim ty unsafeRead (MutableBlock mba) i = primMbaRead mba i {-# INLINE unsafeRead #-} -- | write to a cell in a mutable block without bounds checking. -- -- Writing with invalid bounds will corrupt memory and your program will -- become unreliable. use 'write' if unsure. unsafeWrite :: (PrimMonad prim, PrimType ty) => MutableBlock ty (PrimState prim) -> Offset ty -> ty -> prim () unsafeWrite (MutableBlock mba) i v = primMbaWrite mba i v {-# INLINE unsafeWrite #-} -- | Get a Ptr pointing to the data in the Block. -- -- Since a Block is immutable, this Ptr shouldn't be -- to use to modify the contents -- -- If the Block is pinned, then its address is returned as is, -- however if it's unpinned, a pinned copy of the UArray is made -- before getting the address. withPtr :: PrimMonad prim => Block ty -> (Ptr ty -> prim a) -> prim a withPtr x@(Block ba) f | isPinned x == Pinned = f (Ptr (byteArrayContents# ba)) <* touch x | otherwise = do arr@(Block arrBa) <- makeTrampoline f (Ptr (byteArrayContents# arrBa)) <* touch arr where makeTrampoline = do trampoline <- unsafeNew Pinned (lengthBytes x) unsafeCopyBytesRO trampoline 0 x 0 (lengthBytes x) unsafeFreeze trampoline touch :: PrimMonad prim => Block ty -> prim () touch (Block ba) = unsafePrimFromIO $ primitive $ \s -> case touch# ba s of { s2 -> (# s2, () #) } -- | Use the 'Ptr' to a mutable block in a safer construct -- -- If the block is not pinned, this is a _dangerous_ operation mutableWithPtr :: PrimMonad prim => MutableBlock ty (PrimState prim) -> (Ptr ty -> prim a) -> prim a mutableWithPtr = withMutablePtr {-# DEPRECATED mutableWithPtr "use withMutablePtr" #-} -- | Create a pointer on the beginning of the MutableBlock -- and call a function 'f'. -- -- The mutable block can be mutated by the 'f' function -- and the change will be reflected in the mutable block -- -- If the mutable block is unpinned, a trampoline buffer -- is created and the data is only copied when 'f' return. -- -- it is all-in-all highly inefficient as this cause 2 copies withMutablePtr :: PrimMonad prim => MutableBlock ty (PrimState prim) -> (Ptr ty -> prim a) -> prim a withMutablePtr = withMutablePtrHint False False -- | Same as 'withMutablePtr' but allow to specify 2 optimisations -- which is only useful when the MutableBlock is unpinned and need -- a pinned trampoline to be called safely. -- -- If skipCopy is True, then the first copy which happen before -- the call to 'f', is skipped. The Ptr is now effectively -- pointing to uninitialized data in a new mutable Block. -- -- If skipCopyBack is True, then the second copy which happen after -- the call to 'f', is skipped. Then effectively in the case of a -- trampoline being used the memory changed by 'f' will not -- be reflected in the original Mutable Block. -- -- If using the wrong parameters, it will lead to difficult to -- debug issue of corrupted buffer which only present themselves -- with certain Mutable Block that happened to have been allocated -- unpinned. -- -- If unsure use 'withMutablePtr', which default to *not* skip -- any copy. withMutablePtrHint :: forall ty prim a . PrimMonad prim => Bool -- ^ hint that the buffer doesn't need to have the same value as the mutable block when calling f -> Bool -- ^ hint that the buffer is not supposed to be modified by call of f -> MutableBlock ty (PrimState prim) -> (Ptr ty -> prim a) -> prim a withMutablePtrHint skipCopy skipCopyBack mb f | isMutablePinned mb == Pinned = callWithPtr mb | otherwise = do trampoline <- unsafeNew Pinned vecSz if not skipCopy then unsafeCopyBytes trampoline 0 mb 0 vecSz else pure () r <- callWithPtr trampoline if not skipCopyBack then unsafeCopyBytes mb 0 trampoline 0 vecSz else pure () pure r where vecSz = mutableLengthBytes mb callWithPtr pinnedMb = do b@(Block ba) <- unsafeFreeze pinnedMb f (Ptr (byteArrayContents# ba)) <* touch b