bifunctors-5.4: Bifunctors

Data.Biapplicative

Contents

Description

Synopsis

# Biapplicative bifunctors

class Bifunctor p => Biapplicative p where Source #

Minimal complete definition

Methods

bipure :: a -> b -> p a b Source #

(<<*>>) :: p (a -> b) (c -> d) -> p a c -> p b d infixl 4 Source #

(*>>) :: p a b -> p c d -> p c d infixl 4 Source #

a *>> b ≡ bimap (const id) (const id) <<$>> a <<*>> b  (<<*) :: p a b -> p c d -> p a b infixl 4 Source # a <<* b ≡ bimap const const <<$>> a <<*>> b


Instances

 Source # Methodsbipure :: a -> b -> (a, b) Source #(<<*>>) :: (a -> b, c -> d) -> (a, c) -> (b, d) Source #(*>>) :: (a, b) -> (c, d) -> (c, d) Source #(<<*) :: (a, b) -> (c, d) -> (a, b) Source # Source # Methodsbipure :: a -> b -> Arg a b Source #(<<*>>) :: Arg (a -> b) (c -> d) -> Arg a c -> Arg b d Source #(*>>) :: Arg a b -> Arg c d -> Arg c d Source #(<<*) :: Arg a b -> Arg c d -> Arg a b Source # Monoid x => Biapplicative ((,,) x) Source # Methodsbipure :: a -> b -> (x, a, b) Source #(<<*>>) :: (x, a -> b, c -> d) -> (x, a, c) -> (x, b, d) Source #(*>>) :: (x, a, b) -> (x, c, d) -> (x, c, d) Source #(<<*) :: (x, a, b) -> (x, c, d) -> (x, a, b) Source # Source # Methodsbipure :: a -> b -> Const * a b Source #(<<*>>) :: Const * (a -> b) (c -> d) -> Const * a c -> Const * b d Source #(*>>) :: Const * a b -> Const * c d -> Const * c d Source #(<<*) :: Const * a b -> Const * c d -> Const * a b Source # Source # Methodsbipure :: a -> b -> Tagged * a b Source #(<<*>>) :: Tagged * (a -> b) (c -> d) -> Tagged * a c -> Tagged * b d Source #(*>>) :: Tagged * a b -> Tagged * c d -> Tagged * c d Source #(<<*) :: Tagged * a b -> Tagged * c d -> Tagged * a b Source # (Monoid x, Monoid y) => Biapplicative ((,,,) x y) Source # Methodsbipure :: a -> b -> (x, y, a, b) Source #(<<*>>) :: (x, y, a -> b, c -> d) -> (x, y, a, c) -> (x, y, b, d) Source #(*>>) :: (x, y, a, b) -> (x, y, c, d) -> (x, y, c, d) Source #(<<*) :: (x, y, a, b) -> (x, y, c, d) -> (x, y, a, b) Source # (Monoid x, Monoid y, Monoid z) => Biapplicative ((,,,,) x y z) Source # Methodsbipure :: a -> b -> (x, y, z, a, b) Source #(<<*>>) :: (x, y, z, a -> b, c -> d) -> (x, y, z, a, c) -> (x, y, z, b, d) Source #(*>>) :: (x, y, z, a, b) -> (x, y, z, c, d) -> (x, y, z, c, d) Source #(<<*) :: (x, y, z, a, b) -> (x, y, z, c, d) -> (x, y, z, a, b) Source # Source # Methodsbipure :: a -> b -> Clown * * f a b Source #(<<*>>) :: Clown * * f (a -> b) (c -> d) -> Clown * * f a c -> Clown * * f b d Source #(*>>) :: Clown * * f a b -> Clown * * f c d -> Clown * * f c d Source #(<<*) :: Clown * * f a b -> Clown * * f c d -> Clown * * f a b Source # Source # Methodsbipure :: a -> b -> Flip * * p a b Source #(<<*>>) :: Flip * * p (a -> b) (c -> d) -> Flip * * p a c -> Flip * * p b d Source #(*>>) :: Flip * * p a b -> Flip * * p c d -> Flip * * p c d Source #(<<*) :: Flip * * p a b -> Flip * * p c d -> Flip * * p a b Source # Source # Methodsbipure :: a -> b -> Joker * * g a b Source #(<<*>>) :: Joker * * g (a -> b) (c -> d) -> Joker * * g a c -> Joker * * g b d Source #(*>>) :: Joker * * g a b -> Joker * * g c d -> Joker * * g c d Source #(<<*) :: Joker * * g a b -> Joker * * g c d -> Joker * * g a b Source # Source # Methodsbipure :: a -> b -> WrappedBifunctor * * p a b Source #(<<*>>) :: WrappedBifunctor * * p (a -> b) (c -> d) -> WrappedBifunctor * * p a c -> WrappedBifunctor * * p b d Source #(*>>) :: WrappedBifunctor * * p a b -> WrappedBifunctor * * p c d -> WrappedBifunctor * * p c d Source #(<<*) :: WrappedBifunctor * * p a b -> WrappedBifunctor * * p c d -> WrappedBifunctor * * p a b Source # (Monoid x, Monoid y, Monoid z, Monoid w) => Biapplicative ((,,,,,) x y z w) Source # Methodsbipure :: a -> b -> (x, y, z, w, a, b) Source #(<<*>>) :: (x, y, z, w, a -> b, c -> d) -> (x, y, z, w, a, c) -> (x, y, z, w, b, d) Source #(*>>) :: (x, y, z, w, a, b) -> (x, y, z, w, c, d) -> (x, y, z, w, c, d) Source #(<<*) :: (x, y, z, w, a, b) -> (x, y, z, w, c, d) -> (x, y, z, w, a, b) Source # (Biapplicative f, Biapplicative g) => Biapplicative (Product * * f g) Source # Methodsbipure :: a -> b -> Product * * f g a b Source #(<<*>>) :: Product * * f g (a -> b) (c -> d) -> Product * * f g a c -> Product * * f g b d Source #(*>>) :: Product * * f g a b -> Product * * f g c d -> Product * * f g c d Source #(<<*) :: Product * * f g a b -> Product * * f g c d -> Product * * f g a b Source # (Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Biapplicative ((,,,,,,) x y z w v) Source # Methodsbipure :: a -> b -> (x, y, z, w, v, a, b) Source #(<<*>>) :: (x, y, z, w, v, a -> b, c -> d) -> (x, y, z, w, v, a, c) -> (x, y, z, w, v, b, d) Source #(*>>) :: (x, y, z, w, v, a, b) -> (x, y, z, w, v, c, d) -> (x, y, z, w, v, c, d) Source #(<<*) :: (x, y, z, w, v, a, b) -> (x, y, z, w, v, c, d) -> (x, y, z, w, v, a, b) Source # (Applicative f, Biapplicative p) => Biapplicative (Tannen * * * f p) Source # Methodsbipure :: a -> b -> Tannen * * * f p a b Source #(<<*>>) :: Tannen * * * f p (a -> b) (c -> d) -> Tannen * * * f p a c -> Tannen * * * f p b d Source #(*>>) :: Tannen * * * f p a b -> Tannen * * * f p c d -> Tannen * * * f p c d Source #(<<*) :: Tannen * * * f p a b -> Tannen * * * f p c d -> Tannen * * * f p a b Source # (Biapplicative p, Applicative f, Applicative g) => Biapplicative (Biff * * * * p f g) Source # Methodsbipure :: a -> b -> Biff * * * * p f g a b Source #(<<*>>) :: Biff * * * * p f g (a -> b) (c -> d) -> Biff * * * * p f g a c -> Biff * * * * p f g b d Source #(*>>) :: Biff * * * * p f g a b -> Biff * * * * p f g c d -> Biff * * * * p f g c d Source #(<<*) :: Biff * * * * p f g a b -> Biff * * * * p f g c d -> Biff * * * * p f g a b Source #

(<<\$>>) :: (a -> b) -> a -> b infixl 4 Source #

(<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d infixl 4 Source #

biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f Source #

Lift binary functions

biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h Source #

Lift ternary functions