//===- DWARFDie.h -----------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_DEBUGINFO_DWARFDIE_H #define LLVM_DEBUGINFO_DWARFDIE_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DIContext.h" #include "llvm/DebugInfo/DWARF/DWARFAddressRange.h" #include "llvm/DebugInfo/DWARF/DWARFAttribute.h" #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" #include #include #include namespace llvm { class DWARFUnit; class raw_ostream; //===----------------------------------------------------------------------===// /// Utility class that carries the DWARF compile/type unit and the debug info /// entry in an object. /// /// When accessing information from a debug info entry we always need to DWARF /// compile/type unit in order to extract the info correctly as some information /// is relative to the compile/type unit. Prior to this class the DWARFUnit and /// the DWARFDebugInfoEntry was passed around separately and there was the /// possibility for error if the wrong DWARFUnit was used to extract a unit /// relative offset. This class helps to ensure that this doesn't happen and /// also simplifies the attribute extraction calls by not having to specify the /// DWARFUnit for each call. class DWARFDie { DWARFUnit *U = nullptr; const DWARFDebugInfoEntry *Die = nullptr; public: DWARFDie() = default; DWARFDie(DWARFUnit *Unit, const DWARFDebugInfoEntry *D) : U(Unit), Die(D) {} bool isValid() const { return U && Die; } explicit operator bool() const { return isValid(); } const DWARFDebugInfoEntry *getDebugInfoEntry() const { return Die; } DWARFUnit *getDwarfUnit() const { return U; } /// Get the abbreviation declaration for this DIE. /// /// \returns the abbreviation declaration or NULL for null tags. const DWARFAbbreviationDeclaration *getAbbreviationDeclarationPtr() const { assert(isValid() && "must check validity prior to calling"); return Die->getAbbreviationDeclarationPtr(); } /// Get the absolute offset into the debug info or types section. /// /// \returns the DIE offset or -1U if invalid. uint64_t getOffset() const { assert(isValid() && "must check validity prior to calling"); return Die->getOffset(); } dwarf::Tag getTag() const { auto AbbrevDecl = getAbbreviationDeclarationPtr(); if (AbbrevDecl) return AbbrevDecl->getTag(); return dwarf::DW_TAG_null; } bool hasChildren() const { assert(isValid() && "must check validity prior to calling"); return Die->hasChildren(); } /// Returns true for a valid DIE that terminates a sibling chain. bool isNULL() const { return getAbbreviationDeclarationPtr() == nullptr; } /// Returns true if DIE represents a subprogram (not inlined). bool isSubprogramDIE() const; /// Returns true if DIE represents a subprogram or an inlined subroutine. bool isSubroutineDIE() const; /// Get the parent of this DIE object. /// /// \returns a valid DWARFDie instance if this object has a parent or an /// invalid DWARFDie instance if it doesn't. DWARFDie getParent() const; /// Get the sibling of this DIE object. /// /// \returns a valid DWARFDie instance if this object has a sibling or an /// invalid DWARFDie instance if it doesn't. DWARFDie getSibling() const; /// Get the previous sibling of this DIE object. /// /// \returns a valid DWARFDie instance if this object has a sibling or an /// invalid DWARFDie instance if it doesn't. DWARFDie getPreviousSibling() const; /// Get the first child of this DIE object. /// /// \returns a valid DWARFDie instance if this object has children or an /// invalid DWARFDie instance if it doesn't. DWARFDie getFirstChild() const; /// Get the last child of this DIE object. /// /// \returns a valid null DWARFDie instance if this object has children or an /// invalid DWARFDie instance if it doesn't. DWARFDie getLastChild() const; /// Dump the DIE and all of its attributes to the supplied stream. /// /// \param OS the stream to use for output. /// \param indent the number of characters to indent each line that is output. void dump(raw_ostream &OS, unsigned indent = 0, DIDumpOptions DumpOpts = DIDumpOptions()) const; /// Convenience zero-argument overload for debugging. LLVM_DUMP_METHOD void dump() const; /// Extract the specified attribute from this DIE. /// /// Extract an attribute value from this DIE only. This call doesn't look /// for the attribute value in any DW_AT_specification or /// DW_AT_abstract_origin referenced DIEs. /// /// \param Attr the attribute to extract. /// \returns an optional DWARFFormValue that will have the form value if the /// attribute was successfully extracted. Optional find(dwarf::Attribute Attr) const; /// Extract the first value of any attribute in Attrs from this DIE. /// /// Extract the first attribute that matches from this DIE only. This call /// doesn't look for the attribute value in any DW_AT_specification or /// DW_AT_abstract_origin referenced DIEs. The attributes will be searched /// linearly in the order they are specified within Attrs. /// /// \param Attrs an array of DWARF attribute to look for. /// \returns an optional that has a valid DWARFFormValue for the first /// matching attribute in Attrs, or None if none of the attributes in Attrs /// exist in this DIE. Optional find(ArrayRef Attrs) const; /// Extract the first value of any attribute in Attrs from this DIE and /// recurse into any DW_AT_specification or DW_AT_abstract_origin referenced /// DIEs. /// /// \param Attrs an array of DWARF attribute to look for. /// \returns an optional that has a valid DWARFFormValue for the first /// matching attribute in Attrs, or None if none of the attributes in Attrs /// exist in this DIE or in any DW_AT_specification or DW_AT_abstract_origin /// DIEs. Optional findRecursively(ArrayRef Attrs) const; /// Extract the specified attribute from this DIE as the referenced DIE. /// /// Regardless of the reference type, return the correct DWARFDie instance if /// the attribute exists. The returned DWARFDie object might be from another /// DWARFUnit, but that is all encapsulated in the new DWARFDie object. /// /// Extract an attribute value from this DIE only. This call doesn't look /// for the attribute value in any DW_AT_specification or /// DW_AT_abstract_origin referenced DIEs. /// /// \param Attr the attribute to extract. /// \returns a valid DWARFDie instance if the attribute exists, or an invalid /// DWARFDie object if it doesn't. DWARFDie getAttributeValueAsReferencedDie(dwarf::Attribute Attr) const; DWARFDie getAttributeValueAsReferencedDie(const DWARFFormValue &V) const; /// Extract the range base attribute from this DIE as absolute section offset. /// /// This is a utility function that checks for either the DW_AT_rnglists_base /// or DW_AT_GNU_ranges_base attribute. /// /// \returns anm optional absolute section offset value for the attribute. Optional getRangesBaseAttribute() const; /// Get the DW_AT_high_pc attribute value as an address. /// /// In DWARF version 4 and later the high PC can be encoded as an offset from /// the DW_AT_low_pc. This function takes care of extracting the value as an /// address or offset and adds it to the low PC if needed and returns the /// value as an optional in case the DIE doesn't have a DW_AT_high_pc /// attribute. /// /// \param LowPC the low PC that might be needed to calculate the high PC. /// \returns an optional address value for the attribute. Optional getHighPC(uint64_t LowPC) const; /// Retrieves DW_AT_low_pc and DW_AT_high_pc from CU. /// Returns true if both attributes are present. bool getLowAndHighPC(uint64_t &LowPC, uint64_t &HighPC, uint64_t &SectionIndex) const; /// Get the address ranges for this DIE. /// /// Get the hi/low PC range if both attributes are available or exrtracts the /// non-contiguous address ranges from the DW_AT_ranges attribute. /// /// Extracts the range information from this DIE only. This call doesn't look /// for the range in any DW_AT_specification or DW_AT_abstract_origin DIEs. /// /// \returns a address range vector that might be empty if no address range /// information is available. Expected getAddressRanges() const; /// Get all address ranges for any DW_TAG_subprogram DIEs in this DIE or any /// of its children. /// /// Get the hi/low PC range if both attributes are available or exrtracts the /// non-contiguous address ranges from the DW_AT_ranges attribute for this DIE /// and all children. /// /// \param Ranges the addres range vector to fill in. void collectChildrenAddressRanges(DWARFAddressRangesVector &Ranges) const; bool addressRangeContainsAddress(const uint64_t Address) const; /// If a DIE represents a subprogram (or inlined subroutine), returns its /// mangled name (or short name, if mangled is missing). This name may be /// fetched from specification or abstract origin for this subprogram. /// Returns null if no name is found. const char *getSubroutineName(DINameKind Kind) const; /// Return the DIE name resolving DW_AT_sepcification or DW_AT_abstract_origin /// references if necessary. Returns null if no name is found. const char *getName(DINameKind Kind) const; /// Returns the declaration line (start line) for a DIE, assuming it specifies /// a subprogram. This may be fetched from specification or abstract origin /// for this subprogram by resolving DW_AT_sepcification or /// DW_AT_abstract_origin references if necessary. uint64_t getDeclLine() const; /// Retrieves values of DW_AT_call_file, DW_AT_call_line and DW_AT_call_column /// from DIE (or zeroes if they are missing). This function looks for /// DW_AT_call attributes in this DIE only, it will not resolve the attribute /// values in any DW_AT_specification or DW_AT_abstract_origin DIEs. /// \param CallFile filled in with non-zero if successful, zero if there is no /// DW_AT_call_file attribute in this DIE. /// \param CallLine filled in with non-zero if successful, zero if there is no /// DW_AT_call_line attribute in this DIE. /// \param CallColumn filled in with non-zero if successful, zero if there is /// no DW_AT_call_column attribute in this DIE. /// \param CallDiscriminator filled in with non-zero if successful, zero if /// there is no DW_AT_GNU_discriminator attribute in this DIE. void getCallerFrame(uint32_t &CallFile, uint32_t &CallLine, uint32_t &CallColumn, uint32_t &CallDiscriminator) const; class attribute_iterator; /// Get an iterator range to all attributes in the current DIE only. /// /// \returns an iterator range for the attributes of the current DIE. iterator_range attributes() const; class iterator; iterator begin() const; iterator end() const; std::reverse_iterator rbegin() const; std::reverse_iterator rend() const; iterator_range children() const; }; class DWARFDie::attribute_iterator : public iterator_facade_base { /// The DWARF DIE we are extracting attributes from. DWARFDie Die; /// The value vended to clients via the operator*() or operator->(). DWARFAttribute AttrValue; /// The attribute index within the abbreviation declaration in Die. uint32_t Index; friend bool operator==(const attribute_iterator &LHS, const attribute_iterator &RHS); /// Update the attribute index and attempt to read the attribute value. If the /// attribute is able to be read, update AttrValue and the Index member /// variable. If the attribute value is not able to be read, an appropriate /// error will be set if the Err member variable is non-NULL and the iterator /// will be set to the end value so iteration stops. void updateForIndex(const DWARFAbbreviationDeclaration &AbbrDecl, uint32_t I); public: attribute_iterator() = delete; explicit attribute_iterator(DWARFDie D, bool End); attribute_iterator &operator++(); attribute_iterator &operator--(); explicit operator bool() const { return AttrValue.isValid(); } const DWARFAttribute &operator*() const { return AttrValue; } }; inline bool operator==(const DWARFDie::attribute_iterator &LHS, const DWARFDie::attribute_iterator &RHS) { return LHS.Index == RHS.Index; } inline bool operator!=(const DWARFDie::attribute_iterator &LHS, const DWARFDie::attribute_iterator &RHS) { return !(LHS == RHS); } inline bool operator==(const DWARFDie &LHS, const DWARFDie &RHS) { return LHS.getDebugInfoEntry() == RHS.getDebugInfoEntry() && LHS.getDwarfUnit() == RHS.getDwarfUnit(); } inline bool operator!=(const DWARFDie &LHS, const DWARFDie &RHS) { return !(LHS == RHS); } inline bool operator<(const DWARFDie &LHS, const DWARFDie &RHS) { return LHS.getOffset() < RHS.getOffset(); } class DWARFDie::iterator : public iterator_facade_base { DWARFDie Die; friend std::reverse_iterator; friend bool operator==(const DWARFDie::iterator &LHS, const DWARFDie::iterator &RHS); public: iterator() = default; explicit iterator(DWARFDie D) : Die(D) {} iterator &operator++() { Die = Die.getSibling(); return *this; } iterator &operator--() { Die = Die.getPreviousSibling(); return *this; } const DWARFDie &operator*() const { return Die; } }; inline bool operator==(const DWARFDie::iterator &LHS, const DWARFDie::iterator &RHS) { return LHS.Die == RHS.Die; } inline bool operator!=(const DWARFDie::iterator &LHS, const DWARFDie::iterator &RHS) { return !(LHS == RHS); } // These inline functions must follow the DWARFDie::iterator definition above // as they use functions from that class. inline DWARFDie::iterator DWARFDie::begin() const { return iterator(getFirstChild()); } inline DWARFDie::iterator DWARFDie::end() const { return iterator(getLastChild()); } inline iterator_range DWARFDie::children() const { return make_range(begin(), end()); } } // end namespace llvm namespace std { template <> class reverse_iterator : public llvm::iterator_facade_base< reverse_iterator, bidirectional_iterator_tag, const llvm::DWARFDie> { private: llvm::DWARFDie Die; bool AtEnd; public: reverse_iterator(llvm::DWARFDie::iterator It) : Die(It.Die), AtEnd(!It.Die.getPreviousSibling()) { if (!AtEnd) Die = Die.getPreviousSibling(); } llvm::DWARFDie::iterator base() const { return llvm::DWARFDie::iterator(AtEnd ? Die : Die.getSibling()); } reverse_iterator &operator++() { assert(!AtEnd && "Incrementing rend"); llvm::DWARFDie D = Die.getPreviousSibling(); if (D) Die = D; else AtEnd = true; return *this; } reverse_iterator &operator--() { if (AtEnd) { AtEnd = false; return *this; } Die = Die.getSibling(); assert(!Die.isNULL() && "Decrementing rbegin"); return *this; } const llvm::DWARFDie &operator*() const { assert(Die.isValid()); return Die; } // FIXME: We should be able to specify the equals operator as a friend, but // that causes the compiler to think the operator overload is ambiguous // with the friend declaration and the actual definition as candidates. bool equals(const reverse_iterator &RHS) const { return Die == RHS.Die && AtEnd == RHS.AtEnd; } }; } // namespace std namespace llvm { inline bool operator==(const std::reverse_iterator &LHS, const std::reverse_iterator &RHS) { return LHS.equals(RHS); } inline bool operator!=(const std::reverse_iterator &LHS, const std::reverse_iterator &RHS) { return !(LHS == RHS); } inline std::reverse_iterator DWARFDie::rbegin() const { return llvm::make_reverse_iterator(end()); } inline std::reverse_iterator DWARFDie::rend() const { return llvm::make_reverse_iterator(begin()); } } // end namespace llvm #endif // LLVM_DEBUGINFO_DWARFDIE_H