-- Do not edit! Automatically generated by create-lapack-ffi. module Numeric.BLAS.CArray.ComplexFloat where import qualified Numeric.BLAS.FFI.ComplexFloat as FFI import qualified Numeric.Netlib.CArray.Utility as Call import Data.Array.IOCArray (IOCArray, getBounds) import Data.Array.CArray (CArray, bounds) import Data.Complex (Complex) import Foreign.Storable.Complex () import Foreign.Storable (peek) import Foreign.C.Types (CInt) import Control.Monad.Trans.Cont (evalContT) import Control.Monad.IO.Class (liftIO) import Control.Applicative (pure, (<$>), (<*>)) axpy :: Int {- ^ n -} -> Complex Float {- ^ ca -} -> CArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IOCArray Int (Complex Float) {- ^ cy -} -> Int {- ^ incy -} -> IO () axpy n ca cx incx cy incy = do let cxDim0 = Call.sizes1 $ bounds cx cyDim0 <- Call.sizes1 <$> getBounds cy Call.assert "axpy: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) Call.assert "axpy: 1+(n-1)*abs(incy) == cyDim0" (1+(n-1)*abs(incy) == cyDim0) evalContT $ do nPtr <- Call.cint n caPtr <- Call.complexFloat ca cxPtr <- Call.array cx incxPtr <- Call.cint incx cyPtr <- Call.ioarray cy incyPtr <- Call.cint incy liftIO $ FFI.axpy nPtr caPtr cxPtr incxPtr cyPtr incyPtr casum :: Int {- ^ n -} -> IOCArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IO Float casum n cx incx = do cxDim0 <- Call.sizes1 <$> getBounds cx Call.assert "casum: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) evalContT $ do nPtr <- Call.cint n cxPtr <- Call.ioarray cx incxPtr <- Call.cint incx liftIO $ FFI.casum nPtr cxPtr incxPtr cnrm2 :: CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO Float cnrm2 x incx = do let xDim0 = Call.sizes1 $ bounds x let n = xDim0 evalContT $ do nPtr <- Call.cint n xPtr <- Call.array x incxPtr <- Call.cint incx liftIO $ FFI.cnrm2 nPtr xPtr incxPtr copy :: Int {- ^ n -} -> CArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> Int {- ^ incy -} -> IO (CArray Int (Complex Float)) copy n cx incx incy = do let cxDim0 = Call.sizes1 $ bounds cx Call.assert "copy: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) cy <- Call.newArray1 (1+(n-1)*abs(incy)) evalContT $ do nPtr <- Call.cint n cxPtr <- Call.array cx incxPtr <- Call.cint incx cyPtr <- Call.ioarray cy incyPtr <- Call.cint incy liftIO $ FFI.copy nPtr cxPtr incxPtr cyPtr incyPtr liftIO $ Call.freezeArray cy gbmv :: Char {- ^ trans -} -> Int {- ^ m -} -> Int {- ^ kl -} -> Int {- ^ ku -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> Complex Float {- ^ beta -} -> IOCArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IO () gbmv trans m kl ku alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let xDim0 = Call.sizes1 $ bounds x yDim0 <- Call.sizes1 <$> getBounds y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do transPtr <- Call.char trans mPtr <- Call.cint m nPtr <- Call.cint n klPtr <- Call.cint kl kuPtr <- Call.cint ku alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.complexFloat beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.gbmv transPtr mPtr nPtr klPtr kuPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr gemm :: Char {- ^ transa -} -> Char {- ^ transb -} -> Int {- ^ m -} -> Int {- ^ k -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray (Int,Int) (Complex Float) {- ^ b -} -> Complex Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () gemm transa transb m k alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let (bDim0,bDim1) = Call.sizes2 $ bounds b (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let _kb = bDim0 let ldb = bDim1 let n = cDim0 let ldc = cDim1 evalContT $ do transaPtr <- Call.char transa transbPtr <- Call.char transb mPtr <- Call.cint m nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.complexFloat beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.gemm transaPtr transbPtr mPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr gemv :: Char {- ^ trans -} -> Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> Complex Float {- ^ beta -} -> IOCArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IO () gemv trans m alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let xDim0 = Call.sizes1 $ bounds x yDim0 <- Call.sizes1 <$> getBounds y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do transPtr <- Call.char trans mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.complexFloat beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.gemv transPtr mPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr gerc :: Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> CArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IOCArray (Int,Int) (Complex Float) {- ^ a -} -> IO () gerc m alpha x incx y incy a = do let xDim0 = Call.sizes1 $ bounds x let yDim0 = Call.sizes1 $ bounds y (aDim0,aDim1) <- Call.sizes2 <$> getBounds a let _xSize = xDim0 let _ySize = yDim0 let n = aDim0 let lda = aDim1 evalContT $ do mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.gerc mPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr geru :: Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> CArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IOCArray (Int,Int) (Complex Float) {- ^ a -} -> IO () geru m alpha x incx y incy a = do let xDim0 = Call.sizes1 $ bounds x let yDim0 = Call.sizes1 $ bounds y (aDim0,aDim1) <- Call.sizes2 <$> getBounds a let _xSize = xDim0 let _ySize = yDim0 let n = aDim0 let lda = aDim1 evalContT $ do mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.geru mPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr hbmv :: Char {- ^ uplo -} -> Int {- ^ k -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> Complex Float {- ^ beta -} -> IOCArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IO () hbmv uplo k alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let xDim0 = Call.sizes1 $ bounds x yDim0 <- Call.sizes1 <$> getBounds y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.complexFloat beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.hbmv uploPtr nPtr kPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr hemm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray (Int,Int) (Complex Float) {- ^ b -} -> Complex Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () hemm side uplo m alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let (bDim0,bDim1) = Call.sizes2 $ bounds b (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 let ldc = cDim1 Call.assert "hemm: n == cDim0" (n == cDim0) evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.complexFloat beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.hemm sidePtr uploPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr hemv :: Char {- ^ uplo -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> Complex Float {- ^ beta -} -> IOCArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IO () hemv uplo alpha a x incx beta y incy = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let xDim0 = Call.sizes1 $ bounds x yDim0 <- Call.sizes1 <$> getBounds y let n = aDim0 let lda = aDim1 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.complexFloat beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.hemv uploPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr her :: Char {- ^ uplo -} -> Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IOCArray (Int,Int) (Complex Float) {- ^ a -} -> IO () her uplo alpha x incx a = do let xDim0 = Call.sizes1 $ bounds x (aDim0,aDim1) <- Call.sizes2 <$> getBounds a let _xSize = xDim0 let n = aDim0 let lda = aDim1 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.float alpha xPtr <- Call.array x incxPtr <- Call.cint incx aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.her uploPtr nPtr alphaPtr xPtr incxPtr aPtr ldaPtr her2 :: Char {- ^ uplo -} -> Complex Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> CArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IOCArray (Int,Int) (Complex Float) {- ^ a -} -> IO () her2 uplo alpha x incx y incy a = do let xDim0 = Call.sizes1 $ bounds x let yDim0 = Call.sizes1 $ bounds y (aDim0,aDim1) <- Call.sizes2 <$> getBounds a let _xSize = xDim0 let _ySize = yDim0 let n = aDim0 let lda = aDim1 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy aPtr <- Call.ioarray a ldaPtr <- Call.cint lda liftIO $ FFI.her2 uploPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr her2k :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Int {- ^ k -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray (Int,Int) (Complex Float) {- ^ b -} -> Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () her2k uplo trans k alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let (bDim0,bDim1) = Call.sizes2 $ bounds b (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let _kb = bDim0 let ldb = bDim1 let n = cDim0 let ldc = cDim1 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.float beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.her2k uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr herk :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Int {- ^ k -} -> Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () herk uplo trans k alpha a beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let n = cDim0 let ldc = cDim1 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.float alpha aPtr <- Call.array a ldaPtr <- Call.cint lda betaPtr <- Call.float beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.herk uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr betaPtr cPtr ldcPtr hpmv :: Char {- ^ uplo -} -> Int {- ^ n -} -> Complex Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ ap -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> Complex Float {- ^ beta -} -> IOCArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IO () hpmv uplo n alpha ap x incx beta y incy = do let apDim0 = Call.sizes1 $ bounds ap let xDim0 = Call.sizes1 $ bounds x yDim0 <- Call.sizes1 <$> getBounds y let _apSize = apDim0 let _xSize = xDim0 let _ySize = yDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha apPtr <- Call.array ap xPtr <- Call.array x incxPtr <- Call.cint incx betaPtr <- Call.complexFloat beta yPtr <- Call.ioarray y incyPtr <- Call.cint incy liftIO $ FFI.hpmv uploPtr nPtr alphaPtr apPtr xPtr incxPtr betaPtr yPtr incyPtr hpr :: Char {- ^ uplo -} -> Int {- ^ n -} -> Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IOCArray Int (Complex Float) {- ^ ap -} -> IO () hpr uplo n alpha x incx ap = do let xDim0 = Call.sizes1 $ bounds x apDim0 <- Call.sizes1 <$> getBounds ap let _xSize = xDim0 let _apSize = apDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.float alpha xPtr <- Call.array x incxPtr <- Call.cint incx apPtr <- Call.ioarray ap liftIO $ FFI.hpr uploPtr nPtr alphaPtr xPtr incxPtr apPtr hpr2 :: Char {- ^ uplo -} -> Int {- ^ n -} -> Complex Float {- ^ alpha -} -> CArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> CArray Int (Complex Float) {- ^ y -} -> Int {- ^ incy -} -> IOCArray Int (Complex Float) {- ^ ap -} -> IO () hpr2 uplo n alpha x incx y incy ap = do let xDim0 = Call.sizes1 $ bounds x let yDim0 = Call.sizes1 $ bounds y apDim0 <- Call.sizes1 <$> getBounds ap let _xSize = xDim0 let _ySize = yDim0 let _apSize = apDim0 evalContT $ do uploPtr <- Call.char uplo nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha xPtr <- Call.array x incxPtr <- Call.cint incx yPtr <- Call.array y incyPtr <- Call.cint incy apPtr <- Call.ioarray ap liftIO $ FFI.hpr2 uploPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr apPtr iamax :: Int {- ^ n -} -> CArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IO CInt iamax n cx incx = do let cxDim0 = Call.sizes1 $ bounds cx Call.assert "iamax: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) evalContT $ do nPtr <- Call.cint n cxPtr <- Call.array cx incxPtr <- Call.cint incx liftIO $ FFI.iamax nPtr cxPtr incxPtr rotg :: Complex Float {- ^ ca -} -> Complex Float {- ^ cb -} -> IO (Float, Complex Float) rotg ca cb = do evalContT $ do caPtr <- Call.complexFloat ca cbPtr <- Call.complexFloat cb cPtr <- Call.alloca sPtr <- Call.alloca liftIO $ FFI.rotg caPtr cbPtr cPtr sPtr liftIO $ pure (,) <*> peek cPtr <*> peek sPtr rrot :: Int {- ^ n -} -> IOCArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IOCArray Int (Complex Float) {- ^ cy -} -> Int {- ^ incy -} -> Float {- ^ c -} -> Float {- ^ s -} -> IO () rrot n cx incx cy incy c s = do cxDim0 <- Call.sizes1 <$> getBounds cx cyDim0 <- Call.sizes1 <$> getBounds cy let _cxSize = cxDim0 let _cySize = cyDim0 evalContT $ do nPtr <- Call.cint n cxPtr <- Call.ioarray cx incxPtr <- Call.cint incx cyPtr <- Call.ioarray cy incyPtr <- Call.cint incy cPtr <- Call.float c sPtr <- Call.float s liftIO $ FFI.rrot nPtr cxPtr incxPtr cyPtr incyPtr cPtr sPtr rscal :: Int {- ^ n -} -> Float {- ^ sa -} -> IOCArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IO () rscal n sa cx incx = do cxDim0 <- Call.sizes1 <$> getBounds cx Call.assert "rscal: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) evalContT $ do nPtr <- Call.cint n saPtr <- Call.float sa cxPtr <- Call.ioarray cx incxPtr <- Call.cint incx liftIO $ FFI.rscal nPtr saPtr cxPtr incxPtr scal :: Int {- ^ n -} -> Complex Float {- ^ ca -} -> IOCArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IO () scal n ca cx incx = do cxDim0 <- Call.sizes1 <$> getBounds cx Call.assert "scal: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) evalContT $ do nPtr <- Call.cint n caPtr <- Call.complexFloat ca cxPtr <- Call.ioarray cx incxPtr <- Call.cint incx liftIO $ FFI.scal nPtr caPtr cxPtr incxPtr swap :: Int {- ^ n -} -> IOCArray Int (Complex Float) {- ^ cx -} -> Int {- ^ incx -} -> IOCArray Int (Complex Float) {- ^ cy -} -> Int {- ^ incy -} -> IO () swap n cx incx cy incy = do cxDim0 <- Call.sizes1 <$> getBounds cx cyDim0 <- Call.sizes1 <$> getBounds cy Call.assert "swap: 1+(n-1)*abs(incx) == cxDim0" (1+(n-1)*abs(incx) == cxDim0) Call.assert "swap: 1+(n-1)*abs(incy) == cyDim0" (1+(n-1)*abs(incy) == cyDim0) evalContT $ do nPtr <- Call.cint n cxPtr <- Call.ioarray cx incxPtr <- Call.cint incx cyPtr <- Call.ioarray cy incyPtr <- Call.cint incy liftIO $ FFI.swap nPtr cxPtr incxPtr cyPtr incyPtr symm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray (Int,Int) (Complex Float) {- ^ b -} -> Complex Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () symm side uplo m alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let (bDim0,bDim1) = Call.sizes2 $ bounds b (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 let ldc = cDim1 Call.assert "symm: n == cDim0" (n == cDim0) evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.complexFloat beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.symm sidePtr uploPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr syr2k :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Int {- ^ k -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> CArray (Int,Int) (Complex Float) {- ^ b -} -> Complex Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () syr2k uplo trans k alpha a b beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a let (bDim0,bDim1) = Call.sizes2 $ bounds b (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let _kb = bDim0 let ldb = bDim1 let n = cDim0 let ldc = cDim1 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.array b ldbPtr <- Call.cint ldb betaPtr <- Call.complexFloat beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.syr2k uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr syrk :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Int {- ^ k -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> Complex Float {- ^ beta -} -> IOCArray (Int,Int) (Complex Float) {- ^ c -} -> IO () syrk uplo trans k alpha a beta c = do let (aDim0,aDim1) = Call.sizes2 $ bounds a (cDim0,cDim1) <- Call.sizes2 <$> getBounds c let _ka = aDim0 let lda = aDim1 let n = cDim0 let ldc = cDim1 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans nPtr <- Call.cint n kPtr <- Call.cint k alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda betaPtr <- Call.complexFloat beta cPtr <- Call.ioarray c ldcPtr <- Call.cint ldc liftIO $ FFI.syrk uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr betaPtr cPtr ldcPtr tbmv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ k -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> IOCArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO () tbmv uplo trans diag k a x incx = do let (aDim0,aDim1) = Call.sizes2 $ bounds a xDim0 <- Call.sizes1 <$> getBounds x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n kPtr <- Call.cint k aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tbmv uploPtr transPtr diagPtr nPtr kPtr aPtr ldaPtr xPtr incxPtr tbsv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ k -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> IOCArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO () tbsv uplo trans diag k a x incx = do let (aDim0,aDim1) = Call.sizes2 $ bounds a xDim0 <- Call.sizes1 <$> getBounds x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n kPtr <- Call.cint k aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tbsv uploPtr transPtr diagPtr nPtr kPtr aPtr ldaPtr xPtr incxPtr tpmv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ n -} -> CArray Int (Complex Float) {- ^ ap -} -> IOCArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO () tpmv uplo trans diag n ap x incx = do let apDim0 = Call.sizes1 $ bounds ap xDim0 <- Call.sizes1 <$> getBounds x let _apSize = apDim0 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n apPtr <- Call.array ap xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tpmv uploPtr transPtr diagPtr nPtr apPtr xPtr incxPtr tpsv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> Int {- ^ n -} -> CArray Int (Complex Float) {- ^ ap -} -> IOCArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO () tpsv uplo trans diag n ap x incx = do let apDim0 = Call.sizes1 $ bounds ap xDim0 <- Call.sizes1 <$> getBounds x let _apSize = apDim0 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n apPtr <- Call.array ap xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.tpsv uploPtr transPtr diagPtr nPtr apPtr xPtr incxPtr trmm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Char {- ^ transa -} -> Char {- ^ diag -} -> Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> IOCArray (Int,Int) (Complex Float) {- ^ b -} -> IO () trmm side uplo transa diag m alpha a b = do let (aDim0,aDim1) = Call.sizes2 $ bounds a (bDim0,bDim1) <- Call.sizes2 <$> getBounds b let _k = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo transaPtr <- Call.char transa diagPtr <- Call.char diag mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.ioarray b ldbPtr <- Call.cint ldb liftIO $ FFI.trmm sidePtr uploPtr transaPtr diagPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr trmv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> IOCArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO () trmv uplo trans diag a x incx = do let (aDim0,aDim1) = Call.sizes2 $ bounds a xDim0 <- Call.sizes1 <$> getBounds x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.trmv uploPtr transPtr diagPtr nPtr aPtr ldaPtr xPtr incxPtr trsm :: Char {- ^ side -} -> Char {- ^ uplo -} -> Char {- ^ transa -} -> Char {- ^ diag -} -> Int {- ^ m -} -> Complex Float {- ^ alpha -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> IOCArray (Int,Int) (Complex Float) {- ^ b -} -> IO () trsm side uplo transa diag m alpha a b = do let (aDim0,aDim1) = Call.sizes2 $ bounds a (bDim0,bDim1) <- Call.sizes2 <$> getBounds b let _k = aDim0 let lda = aDim1 let n = bDim0 let ldb = bDim1 evalContT $ do sidePtr <- Call.char side uploPtr <- Call.char uplo transaPtr <- Call.char transa diagPtr <- Call.char diag mPtr <- Call.cint m nPtr <- Call.cint n alphaPtr <- Call.complexFloat alpha aPtr <- Call.array a ldaPtr <- Call.cint lda bPtr <- Call.ioarray b ldbPtr <- Call.cint ldb liftIO $ FFI.trsm sidePtr uploPtr transaPtr diagPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr trsv :: Char {- ^ uplo -} -> Char {- ^ trans -} -> Char {- ^ diag -} -> CArray (Int,Int) (Complex Float) {- ^ a -} -> IOCArray Int (Complex Float) {- ^ x -} -> Int {- ^ incx -} -> IO () trsv uplo trans diag a x incx = do let (aDim0,aDim1) = Call.sizes2 $ bounds a xDim0 <- Call.sizes1 <$> getBounds x let n = aDim0 let lda = aDim1 let _xSize = xDim0 evalContT $ do uploPtr <- Call.char uplo transPtr <- Call.char trans diagPtr <- Call.char diag nPtr <- Call.cint n aPtr <- Call.array a ldaPtr <- Call.cint lda xPtr <- Call.ioarray x incxPtr <- Call.cint incx liftIO $ FFI.trsv uploPtr transPtr diagPtr nPtr aPtr ldaPtr xPtr incxPtr