{- Copyright 2016, Dominic Orchard, Andrew Rice, Mistral Contrastin, Matthew Danish Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} {-# LANGUAGE TemplateHaskell, ImplicitParams #-} {- Provides various data types and type class instances for the Units extension -} module Extensions.UnitsEnvironment where import qualified Data.Label import Data.Label.Mono (Lens) import Data.Label.Monadic hiding (modify) import Control.Monad.State.Strict hiding (gets) import Language.Fortran import Data.Matrix type EqualityConstrained = Bool data Solver = LAPACK | Custom deriving (Show, Read, Eq) data AssumeLiterals = Poly | Unitless | Mixed deriving (Show, Read, Eq) {- Represents a constant unit expression (i.e. one without unit variables) for the RHSs of the Gaussian matrix. e.g. Unitful [("a", 2/3), ("b",2)] represents the linear term 2/3 log a + 2 log b UnitlessC marks unitless i.e., 1 -} data UnitConstant = Unitful [(MeasureUnit, Rational)] | UnitlessC Rational deriving (Eq, Show) -- Column of the Guassian matrix associated with a variable newtype VarCol = VarCol Col deriving (Eq, Show) -- Map from Variable names to their column paired with any column of their indices -- e.g., for a(i,k) we have a map from 'a' to its column paired with -- a two element list of the columns for 'i' and 'j' newtype VarBinder = VarBinder (Variable, SrcSpan) deriving Show type VarColEnv = [(VarBinder, (VarCol, [VarCol]))] data UnitVarCategory = Literal EqualityConstrained | Temporary | Variable | Argument | Magic deriving (Eq, Show) type DerivedUnitEnv = [(MeasureUnit, UnitConstant)] type ProcedureNames = (String, Maybe Variable, [Variable]) type Procedure = (Maybe VarCol, [VarCol]) type ProcedureEnv = [(String, Procedure)] type LinearSystem = (Matrix Rational, [UnitConstant]) type Row = Int type Col = Int type DebugInfo = [(Col, (SrcSpan, String))] data UnitEnv = UnitEnv { _report :: [String], _varColEnv :: VarColEnv, _derivedUnitEnv :: DerivedUnitEnv, _procedureEnv :: ProcedureEnv, _calls :: ProcedureEnv, _unitVarCats :: [UnitVarCategory], _reorderedCols :: [Int], _underdeterminedCols :: [Int], _linearSystem :: LinearSystem, _debugInfo :: DebugInfo, _tmpRowsAdded :: [Int], _tmpColsAdded :: [Int], _success :: Bool, -- This part of the state is just for some evaluation metrics _evUnitsAdded :: (Int, [String]), _evCriticals :: [Int] } deriving Show emptyUnitEnv = UnitEnv { _report = [], _varColEnv = [], _derivedUnitEnv = [], _procedureEnv = [], _calls = [], _unitVarCats = [Magic], _reorderedCols = [], _underdeterminedCols = [], _linearSystem = (fromLists [[1]], [Unitful []]), _debugInfo = [], _tmpRowsAdded = [], _tmpColsAdded = [], _success = True, --- _evUnitsAdded = (0, []), _evCriticals = [] } Data.Label.mkLabels [''UnitEnv] resetTemps :: State UnitEnv () resetTemps = do tmpRowsAdded =: [] tmpColsAdded =: [] trim = filter $ \(unit, r) -> r /= 0 {- Treat 'UnitConstant's as numbers -} instance Num UnitConstant where (Unitful u1) + (Unitful u2) = Unitful $ trim $ merge u1 u2 where merge [] u2 = u2 merge u1 [] = u1 merge ((unit1, r1) : u1) ((unit2, r2) : u2) | unit1 == unit2 = (unit1, r1 + r2) : merge u1 u2 | unit1 < unit2 = (unit1, r1) : merge u1 ((unit2, r2) : u2) | otherwise = (unit2, r2) : merge ((unit1, r1) : u1) u2 (UnitlessC n1) + (UnitlessC n2) = UnitlessC (n1 + n2) (Unitful units) * (UnitlessC n) = Unitful $ trim [(unit, r * n) | (unit, r) <- units] (UnitlessC n) * (Unitful units) = Unitful $ trim [(unit, n * r) | (unit, r) <- units] (UnitlessC n1) * (UnitlessC n2) = UnitlessC (n1 * n2) negate (Unitful units) = Unitful [(unit, -r) | (unit, r) <- units] negate (UnitlessC n) = UnitlessC (-n) abs (Unitful units) = Unitful [(unit, abs r) | (unit, r) <- units] abs (UnitlessC n) = UnitlessC $ abs n signum (Unitful units) = Unitful [(unit, signum r) | (unit, r) <- units] signum (UnitlessC n) = UnitlessC $ signum n fromInteger = UnitlessC . fromInteger {- Treat 'UnitConstant's as fractionals -} instance Fractional UnitConstant where (Unitful units) / (UnitlessC n) = Unitful [(unit, r / n) | (unit, r) <- units] (UnitlessC n1) / (UnitlessC n2) = UnitlessC (n1 / n2) fromRational = UnitlessC . fromRational data Consistency a = Ok a | Bad a Int (UnitConstant, [Rational]) deriving Show efmap :: (a -> a) -> Consistency a -> Consistency a efmap f (Ok x) = Ok (f x) efmap f (Bad x l msg) = Bad x l msg ifDebug :: (?debug :: Bool, Monad m) => m a -> m () ifDebug e = if ?debug then e >> return () else return ()