{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} -- -*- Mode: Haskell -*- {-# LANGUAGE DeriveDataTypeable #-} module Camfort.Specification.Units.Parser ( unitParser , UnitStatement(..) , UnitOfMeasure(..) , UnitPower(..) ) where import Camfort.Analysis.CommentAnnotator import Data.Data import Data.List import Data.Char (isLetter, isNumber, isAlphaNum, toLower) import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts import Control.Applicative(Applicative(..)) import Control.Monad (ap) -- parser produced by Happy Version 1.19.5 newtype HappyAbsSyn = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: (UnitStatement) -> (HappyAbsSyn ) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn ) -> (UnitStatement) happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyIn5 :: (Maybe [String]) -> (HappyAbsSyn ) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn ) -> (Maybe [String]) happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: ([String]) -> (HappyAbsSyn ) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn ) -> ([String]) happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: (UnitOfMeasure) -> (HappyAbsSyn ) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn ) -> (UnitOfMeasure) happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: (UnitOfMeasure) -> (HappyAbsSyn ) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn ) -> (UnitOfMeasure) happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyIn9 :: (UnitOfMeasure) -> (HappyAbsSyn ) happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn9 #-} happyOut9 :: (HappyAbsSyn ) -> (UnitOfMeasure) happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut9 #-} happyIn10 :: (UnitPower) -> (HappyAbsSyn ) happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn10 #-} happyOut10 :: (HappyAbsSyn ) -> (UnitPower) happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut10 #-} happyIn11 :: (Integer) -> (HappyAbsSyn ) happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn11 #-} happyOut11 :: (HappyAbsSyn ) -> (Integer) happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut11 #-} happyIn12 :: (String) -> (HappyAbsSyn ) happyIn12 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn12 #-} happyOut12 :: (HappyAbsSyn ) -> (String) happyOut12 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut12 #-} happyInTok :: (Token) -> (HappyAbsSyn ) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn ) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x44\x00\x41\x00\x0f\x00\x3c\x00\x05\x00\x2b\x00\x04\x00\x3d\x00\x00\x00\x00\x00\x3f\x00\xff\xff\x3b\x00\x01\x00\x34\x00\x00\x00\x35\x00\x10\x00\x36\x00\x0f\x00\x00\x00\x04\x00\x3a\x00\x00\x00\x39\x00\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x00\x19\x00\x0f\x00\x00\x00\x00\x00\x33\x00\xfd\xff\x00\x00\x38\x00\x00\x00\x19\x00\x00\x00\x2c\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x37\x00\x00\x00\x27\x00\x00\x00\x27\x00\x22\x00\x31\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x31\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x1d\x00\x00\x00\x30\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x28\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xf8\xff\xf2\xff\xef\xff\xf7\xff\x00\x00\x00\x00\x00\x00\xf8\xff\xf7\xff\xf5\xff\x00\x00\x00\x00\xf4\xff\x00\x00\xfe\xff\x00\x00\x00\x00\xfc\xff\xf9\xff\xf3\xff\xf1\xff\xee\xff\xeb\xff\xe8\xff\xe9\xff\x00\x00\x00\x00\x00\x00\xf6\xff\xf0\xff\xfd\xff\x00\x00\xea\xff\x00\x00\xfa\xff\x00\x00\xed\xff\x00\x00\xec\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x02\x00\x03\x00\x02\x00\x02\x00\x08\x00\x02\x00\x02\x00\x03\x00\x0c\x00\x0b\x00\x0c\x00\x0b\x00\x0c\x00\x09\x00\x0b\x00\x0b\x00\x02\x00\x03\x00\x03\x00\x04\x00\x08\x00\x06\x00\x03\x00\x04\x00\x05\x00\x0b\x00\x0b\x00\x03\x00\x04\x00\x02\x00\x06\x00\x03\x00\x04\x00\x05\x00\x01\x00\x06\x00\x07\x00\x08\x00\x03\x00\x04\x00\x05\x00\x03\x00\x04\x00\x05\x00\x07\x00\x08\x00\x07\x00\x08\x00\x03\x00\x04\x00\x08\x00\x09\x00\x05\x00\x05\x00\x00\x00\x0c\x00\x07\x00\x02\x00\x08\x00\x02\x00\x07\x00\x05\x00\x0a\x00\x0c\x00\x02\x00\x01\x00\x08\x00\x07\x00\x01\x00\xff\xff\xff\xff\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x09\x00\x0f\x00\x09\x00\x28\x00\x2a\x00\x09\x00\x09\x00\x0a\x00\x2b\x00\x0c\x00\x10\x00\x14\x00\x24\x00\x0b\x00\x14\x00\x0c\x00\x09\x00\x0a\x00\x1e\x00\x1f\x00\x26\x00\x20\x00\x24\x00\x06\x00\x07\x00\x0c\x00\x21\x00\x1e\x00\x1f\x00\x17\x00\x20\x00\x0c\x00\x0d\x00\x07\x00\x14\x00\x1a\x00\x1b\x00\x1c\x00\x0c\x00\x0d\x00\x07\x00\x05\x00\x06\x00\x07\x00\x2b\x00\x1c\x00\x25\x00\x1c\x00\x1e\x00\x1f\x00\x16\x00\x17\x00\x19\x00\x12\x00\x03\x00\x2d\x00\x12\x00\x19\x00\x16\x00\x19\x00\x12\x00\x28\x00\x22\x00\x23\x00\x11\x00\x03\x00\x16\x00\x12\x00\x05\x00\x00\x00\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 23) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15), (16 , happyReduce_16), (17 , happyReduce_17), (18 , happyReduce_18), (19 , happyReduce_19), (20 , happyReduce_20), (21 , happyReduce_21), (22 , happyReduce_22), (23 , happyReduce_23) ] happy_n_terms = 14 :: Int happy_n_nonterms = 9 :: Int happyReduce_1 = happySpecReduce_3 0# happyReduction_1 happyReduction_1 happy_x_3 happy_x_2 happy_x_1 = case happyOut7 happy_x_2 of { happy_var_2 -> case happyOut5 happy_x_3 of { happy_var_3 -> happyIn4 (UnitAssignment happy_var_3 happy_var_2 )}} happyReduce_2 = happyReduce 5# 0# happyReduction_2 happyReduction_2 (happy_x_5 `HappyStk` happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_3 of { (TId happy_var_3) -> case happyOut7 happy_x_5 of { happy_var_5 -> happyIn4 (UnitAlias happy_var_3 happy_var_5 ) `HappyStk` happyRest}} happyReduce_3 = happySpecReduce_2 1# happyReduction_3 happyReduction_3 happy_x_2 happy_x_1 = case happyOut6 happy_x_2 of { happy_var_2 -> happyIn5 (Just happy_var_2 )} happyReduce_4 = happySpecReduce_0 1# happyReduction_4 happyReduction_4 = happyIn5 (Nothing ) happyReduce_5 = happySpecReduce_3 2# happyReduction_5 happyReduction_5 happy_x_3 happy_x_2 happy_x_1 = case happyOutTok happy_x_1 of { (TId happy_var_1) -> case happyOut6 happy_x_3 of { happy_var_3 -> happyIn6 (happy_var_1 : happy_var_3 )}} happyReduce_6 = happySpecReduce_1 2# happyReduction_6 happyReduction_6 happy_x_1 = case happyOutTok happy_x_1 of { (TId happy_var_1) -> happyIn6 ([happy_var_1] )} happyReduce_7 = happySpecReduce_1 3# happyReduction_7 happyReduction_7 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> happyIn7 (happy_var_1 )} happyReduce_8 = happySpecReduce_1 3# happyReduction_8 happyReduction_8 happy_x_1 = happyIn7 (Unitless ) happyReduce_9 = happySpecReduce_3 3# happyReduction_9 happyReduction_9 happy_x_3 happy_x_2 happy_x_1 = happyIn7 (Unitless ) happyReduce_10 = happySpecReduce_2 3# happyReduction_10 happyReduction_10 happy_x_2 happy_x_1 = happyIn7 (Unitless ) happyReduce_11 = happySpecReduce_2 4# happyReduction_11 happyReduction_11 happy_x_2 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> case happyOut9 happy_x_2 of { happy_var_2 -> happyIn8 (UnitProduct happy_var_1 happy_var_2 )}} happyReduce_12 = happySpecReduce_3 4# happyReduction_12 happyReduction_12 happy_x_3 happy_x_2 happy_x_1 = case happyOut7 happy_x_1 of { happy_var_1 -> case happyOut9 happy_x_3 of { happy_var_3 -> happyIn8 (UnitQuotient happy_var_1 happy_var_3 )}} happyReduce_13 = happySpecReduce_1 4# happyReduction_13 happyReduction_13 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> happyIn8 (happy_var_1 )} happyReduce_14 = happySpecReduce_3 5# happyReduction_14 happyReduction_14 happy_x_3 happy_x_2 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> case happyOut10 happy_x_3 of { happy_var_3 -> happyIn9 (UnitExponentiation happy_var_1 happy_var_3 )}} happyReduce_15 = happySpecReduce_3 5# happyReduction_15 happyReduction_15 happy_x_3 happy_x_2 happy_x_1 = case happyOut8 happy_x_2 of { happy_var_2 -> happyIn9 (happy_var_2 )} happyReduce_16 = happySpecReduce_1 5# happyReduction_16 happyReduction_16 happy_x_1 = case happyOutTok happy_x_1 of { (TId happy_var_1) -> happyIn9 (UnitBasic happy_var_1 )} happyReduce_17 = happySpecReduce_1 6# happyReduction_17 happyReduction_17 happy_x_1 = case happyOut11 happy_x_1 of { happy_var_1 -> happyIn10 (UnitPowerInteger happy_var_1 )} happyReduce_18 = happySpecReduce_3 6# happyReduction_18 happyReduction_18 happy_x_3 happy_x_2 happy_x_1 = case happyOut11 happy_x_2 of { happy_var_2 -> happyIn10 (UnitPowerInteger happy_var_2 )} happyReduce_19 = happyReduce 5# 6# happyReduction_19 happyReduction_19 (happy_x_5 `HappyStk` happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOut11 happy_x_2 of { happy_var_2 -> case happyOut11 happy_x_4 of { happy_var_4 -> happyIn10 (UnitPowerRational happy_var_2 happy_var_4 ) `HappyStk` happyRest}} happyReduce_20 = happySpecReduce_1 7# happyReduction_20 happyReduction_20 happy_x_1 = case happyOut12 happy_x_1 of { happy_var_1 -> happyIn11 (read happy_var_1 )} happyReduce_21 = happySpecReduce_2 7# happyReduction_21 happyReduction_21 happy_x_2 happy_x_1 = case happyOut12 happy_x_2 of { happy_var_2 -> happyIn11 (read $ '-' : happy_var_2 )} happyReduce_22 = happySpecReduce_1 8# happyReduction_22 happyReduction_22 happy_x_1 = case happyOutTok happy_x_1 of { (TNum happy_var_1) -> happyIn12 (happy_var_1 )} happyReduce_23 = happySpecReduce_1 8# happyReduction_23 happyReduction_23 happy_x_1 = happyIn12 ("1" ) happyNewToken action sts stk [] = happyDoAction 13# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { TId "unit" -> cont 1#; TId happy_dollar_dollar -> cont 2#; TNum "1" -> cont 3#; TNum happy_dollar_dollar -> cont 4#; TComma -> cont 5#; TMinus -> cont 6#; TExponentiation -> cont 7#; TDivision -> cont 8#; TDoubleColon -> cont 9#; TEqual -> cont 10#; TLeftPar -> cont 11#; TRightPar -> cont 12#; _ -> happyError' (tk:tks) } happyError_ 13# tk tks = happyError' tks happyError_ _ tk tks = happyError' (tk:tks) happyThen :: () => Either AnnotationParseError a -> (a -> Either AnnotationParseError b) -> Either AnnotationParseError b happyThen = (>>=) happyReturn :: () => a -> Either AnnotationParseError a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> Either AnnotationParseError a happyReturn1 = \a tks -> (return) a happyError' :: () => [(Token)] -> Either AnnotationParseError a happyError' = happyError parseUnit tks = happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq data UnitStatement = UnitAssignment (Maybe [String]) UnitOfMeasure | UnitAlias String UnitOfMeasure deriving Data instance Show UnitStatement where show (UnitAssignment (Just ss) uom) = "= unit (" ++ show uom ++ ") :: " ++ (intercalate "," ss) show (UnitAssignment Nothing uom) = "= unit (" ++ show uom ++ ")" show (UnitAlias s uom) = "= unit :: " ++ s ++ " = " ++ show uom data UnitOfMeasure = Unitless | UnitBasic String | UnitProduct UnitOfMeasure UnitOfMeasure | UnitQuotient UnitOfMeasure UnitOfMeasure | UnitExponentiation UnitOfMeasure UnitPower deriving Data instance Show UnitOfMeasure where show Unitless = "1" show (UnitBasic s) = s show (UnitProduct uom1 uom2) = show uom1 ++ " " ++ show uom2 show (UnitQuotient uom1 uom2) = show uom1 ++ " / " ++ show uom2 show (UnitExponentiation uom exp) = show uom ++ "** (" ++ show exp ++ ")" data UnitPower = UnitPowerInteger Integer | UnitPowerRational Integer Integer deriving Data instance Show UnitPower where show (UnitPowerInteger i) = show i show (UnitPowerRational i1 i2) = show i1 ++ "/" ++ show i2 data Token = TUnit | TComma | TDoubleColon | TExponentiation | TDivision | TMinus | TEqual | TLeftPar | TRightPar | TId String | TNum String deriving (Show) lexer :: String -> Either AnnotationParseError [ Token ] lexer ('=':xs) = lexer' xs lexer _ = Left NotAnnotation addToTokens :: Token -> String -> Either AnnotationParseError [ Token ] addToTokens tok rest = do tokens <- lexer' rest return $ tok : tokens lexer' :: String -> Either AnnotationParseError [ Token ] lexer' [] = Right [] lexer' ['\n'] = Right [] lexer' ['\r', '\n'] = Right [] lexer' ['\r'] = Right [] -- windows lexer' (' ':xs) = lexer' xs lexer' ('\t':xs) = lexer' xs lexer' (':':':':xs) = addToTokens TDoubleColon xs lexer' ('*':'*':xs) = addToTokens TExponentiation xs lexer' (',':xs) = addToTokens TComma xs lexer' ('/':xs) = addToTokens TDivision xs lexer' ('-':xs) = addToTokens TMinus xs lexer' ('=':xs) = addToTokens TEqual xs lexer' ('(':xs) = addToTokens TLeftPar xs lexer' (')':xs) = addToTokens TRightPar xs lexer' (x:xs) | isLetter x = aux (\c -> isAlphaNum c || c `elem` ['\'','_','-']) TId | isNumber x = aux isNumber TNum | otherwise = failWith $ "Not valid unit syntax at " ++ show (x:xs) where aux p cons = let (target, rest) = span p xs in lexer' rest >>= (\tokens -> return $ cons (x:target) : tokens) unitParser :: String -> Either AnnotationParseError UnitStatement unitParser src = do tokens <- lexer $ map toLower src parseUnit tokens happyError :: [ Token ] -> Either AnnotationParseError a happyError t = failWith $ "Could not parse specification at: " ++ show t {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 19 "" #-} {-# LINE 1 "/usr/local/lib/ghc-7.10.2/include/ghcversion.h" #-} {-# LINE 20 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 13 "templates/GenericTemplate.hs" #-} -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif {-# LINE 46 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 67 "templates/GenericTemplate.hs" #-} {-# LINE 77 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.