{-# OPTIONS_GHC -fglasgow-exts #-} ------------------------------------------------------------------------------------------- -- | -- Module : Control.Category.Monoidal -- Copyright : 2008 Edward Kmett -- License : BSD -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable (class-associated types) -- -- A 'Monoidal' category is a category with an associated biendofunctor that has an identity, -- which satisfies Mac Lane''s pentagonal and triangular coherence conditions -- Technically we usually say that category is 'monoidal', but since -- most interesting categories in our world have multiple candidate bifunctors that you can -- use to enrich their structure, we choose here to think of the bifunctor as being -- monoidal. This lets us reuse the same Bifunctor over different categories without -- painful type annotations. -- The use of class associated types here makes Control.Category.Cartesian FAR more palatable ------------------------------------------------------------------------------------------- module Control.Category.Monoidal ( module Control.Category.Braided , HasIdentity , Monoidal(..) , Comonoidal(..) ) where import Control.Category.Braided import Control.Category.Hask import Control.Category.Associative import Control.Functor import Data.Void -- | Denotes that we have some reasonable notion of 'Identity' for a particular 'Bifunctor' in this 'Category'. This -- notion is currently used by both 'Monoidal' and 'Comonoidal' class Bifunctor p k k k => HasIdentity k p i | k p -> i {- | A monoidal category. 'idl' and 'idr' are traditionally denoted lambda and rho the triangle identity holds: > bimap idr id = bimap id idl . associate > bimap id idl = bimap idr id . associate -} class (Associative k p, HasIdentity k p i) => Monoidal k p i | k p -> i where idl :: k (p i a) a idr :: k (p a i) a {- | A comonoidal category satisfies the dual form of the triangle identities > bimap idr id = coassociate . bimap id idl > bimap id idl = coassociate . bimap idr id This type class is also (ab)used for the inverse operations needed for a strict (co)monoidal category. A strict (co)monoidal category is one that is both 'Monoidal' and 'Comonoidal' and satisfies the following laws: > idr . coidr = id > idl . coidl = id > coidl . idl = id > coidr . idr = id -} class (Coassociative k p, HasIdentity k p i) => Comonoidal k p i | k p -> i where coidl :: k a (p i a) coidr :: k a (p a i) {-# RULES -- "bimap id idl/associate" bimap id idl . associate = bimap idr id -- "bimap idr id/associate" bimap idr id . associate = bimap id idl -- "coassociate/bimap id idl" coassociate . bimap id idl = bimap idr id -- "coassociate/bimap idr id" coassociate . bimap idr id = bimap id idl "idr/coidr" idr . coidr = id "idl/coidl" idl . coidl = id "coidl/idl" coidl . idl = id "coidr/idr" coidr . idr = id "idr/braid" idr . braid = idl "idl/braid" idl . braid = idr "braid/coidr" braid . coidr = coidl "braid/coidl" braid . coidl = coidr #-} instance HasIdentity Hask (,) Void instance Monoidal Hask (,) Void where idl = snd idr = fst