{-# LANGUAGE OverloadedStrings #-} -- | This module aims to make tagging text with parts of speech -- trivially easy. -- -- If you're new to 'chatter' and POS-tagging, then I -- suggest you simply try: -- -- >>> tagger <- defaultTagger -- >>> tagStr tagger "This is a sample sentence." -- "This/dt is/bez a/at sample/nn sentence/nn ./." -- -- Note that we used 'tagStr', instead of 'tag', or 'tagText'. Many -- people don't (yet!) use "Data.Text" by default, so there is a -- wrapper around 'tag' that packs and unpacks the 'String'. This is -- innefficient, but it's just to get you started, and 'tagStr' can be -- very handy when you're debugging an tagger in ghci (or cabal repl). -- -- 'tag' exposes more details of the tokenization and tagging, since -- it returns a list of `TaggedSentence`s, but it doesn't print -- results as nicely. -- module NLP.POS ( tag , tagStr , tagText , train , trainStr , trainText , eval , serialize , deserialize , taggerTable , saveTagger , loadTagger , defaultTagger ) where import Data.ByteString (ByteString) import qualified Data.ByteString as BS import qualified Data.ByteString.Lazy as LBS import Data.List (isSuffixOf) import Data.Map (Map) import qualified Data.Map as Map import Data.Text (Text) import qualified Data.Text as T import Data.Serialize (encode, decode) import Codec.Compression.GZip (decompress) import System.FilePath (()) import NLP.Corpora.Parsing (readPOS) import NLP.Types (TaggedSentence, Tag(..), Sentence , POSTagger(..), tagUNK, stripTags) import qualified NLP.POS.LiteralTagger as LT import qualified NLP.POS.UnambiguousTagger as UT import qualified NLP.POS.AvgPerceptronTagger as Avg import Paths_chatter defaultTagger :: IO POSTagger defaultTagger = do dir <- getDataDir loadTagger (dir "data" "models" "brown-train.model.gz") -- | The default table of tagger IDs to readTagger functions. Each -- tagger packaged with Chatter should have an entry here. By -- convention, the IDs use are the fully qualified module name of the -- tagger package. taggerTable :: Map ByteString (ByteString -> Maybe POSTagger -> Either String POSTagger) taggerTable = Map.fromList [ (LT.taggerID, LT.readTagger) , (Avg.taggerID, Avg.readTagger) , (UT.taggerID, UT.readTagger) ] -- | Store a `POSTager' to a file. saveTagger :: POSTagger -> FilePath -> IO () saveTagger tagger file = BS.writeFile file (serialize tagger) -- | Load a tagger, using the interal `taggerTable`. If you need to -- specify your own mappings for new composite taggers, you should use -- `deserialize`. -- -- This function checks the filename to determine if the content -- should be decompressed. If the file ends with ".gz", then we -- assume it is a gziped model. loadTagger :: FilePath -> IO POSTagger loadTagger file = do content <- getContent file case deserialize taggerTable content of Left err -> error err Right tgr -> return tgr where getContent :: FilePath -> IO ByteString getContent f | ".gz" `isSuffixOf` file = fmap (LBS.toStrict . decompress) $ LBS.readFile f | otherwise = BS.readFile f serialize :: POSTagger -> ByteString serialize tagger = let backoff = case posBackoff tagger of Nothing -> Nothing Just btgr -> Just $ serialize btgr in encode ( posID tagger , posSerialize tagger , backoff ) deserialize :: Map ByteString (ByteString -> Maybe POSTagger -> Either String POSTagger) -> ByteString -> Either String POSTagger deserialize table bs = do (theID, theTgr, mBackoff) <- decode bs backoff <- case mBackoff of Nothing -> Right Nothing Just str -> Just `fmap` (deserialize table str) case Map.lookup theID table of Nothing -> Left ("Could not find ID in POSTagger function map: " ++ show theID) Just fn -> fn theTgr backoff -- | Tag a chunk of input text with part-of-speech tags, using the -- sentence splitter, tokenizer, and tagger contained in the 'POSTager'. tag :: POSTagger -> Text -> [TaggedSentence] tag p txt = let sentences = (posSplitter p) txt tokens = map (posTokenizer p) sentences in tagTokens p tokens tagTokens :: POSTagger -> [Sentence] -> [TaggedSentence] tagTokens p tokens = let priority = (posTagger p) tokens in case posBackoff p of Nothing -> priority Just tgr -> combine priority (tagTokens tgr tokens) -- | Combine the results of POS taggers, using the second param to -- fill in 'tagUNK' entries, where possible. combine :: [TaggedSentence] -> [TaggedSentence] -> [TaggedSentence] combine xs ys = zipWith combineSentences xs ys combineSentences :: TaggedSentence -> TaggedSentence -> TaggedSentence combineSentences xs ys = zipWith pickTag xs ys -- | Returns the first param, unless it is tagged 'tagUNK'. -- Throws an error if the text does not match. pickTag :: (Text, Tag) -> (Text, Tag) -> (Text, Tag) pickTag a@(txt1, t1) b@(txt2, t2) | txt1 /= txt2 = error ("Text does not match: "++ show a ++ " " ++ show b) | t1 /= tagUNK = (txt1, t1) | otherwise = (txt1, t2) -- | Tag the tokens in a string. -- -- Returns a space-separated string of tokens, each token suffixed -- with the part of speech. For example: -- -- >>> tag tagger "the dog jumped ." -- "the/at dog/nn jumped/vbd ./." -- tagStr :: POSTagger -> String -> String tagStr tgr = T.unpack . tagText tgr . T.pack -- | Text version of tagStr tagText :: POSTagger -> Text -> Text tagText tgr str = T.intercalate " " $ map toTaggedTok taggedSents where taggedSents = concat $ tag tgr str toTaggedTok :: (Text, Tag) -> Text toTaggedTok (tok, Tag c) = tok `T.append` (T.cons '/' c) -- | Train a tagger on string input in the standard form for POS -- tagged corpora: -- -- > trainStr tagger "the/at dog/nn jumped/vbd ./." -- trainStr :: POSTagger -> String -> IO POSTagger trainStr tgr = trainText tgr . T.pack -- | The `Text` version of `trainStr` trainText :: POSTagger -> Text -> IO POSTagger trainText p exs = train p (map readPOS $ (posTokenizer p) exs) -- | Train a 'POSTagger' on a corpus of sentences. -- -- This will recurse through the 'POSTagger' stack, training all the -- backoff taggers as well. In order to do that, this function has to -- be generic to the kind of taggers used, so it is not possible to -- train up a new POSTagger from nothing: 'train' wouldn't know what -- tagger to create. -- -- To get around that restriction, you can use the various 'mkTagger' -- implementations, such as 'NLP.POS.LiteralTagger.mkTagger' or -- NLP.POS.AvgPerceptronTagger.mkTagger'. For example: -- -- > import NLP.POS.AvgPerceptronTagger as APT -- > -- > let newTagger = APT.mkTagger APT.emptyPerceptron Nothing -- > posTgr <- train newTagger trainingExamples -- train :: POSTagger -> [TaggedSentence] -> IO POSTagger train p exs = do let trainBackoff = case posBackoff p of Nothing -> return $ Nothing Just b -> do tgr <- train b exs return $ Just tgr trainer = posTrainer p newTgr <- trainer exs newBackoff <- trainBackoff return (newTgr { posBackoff = newBackoff }) -- | Evaluate a 'POSTager'. -- -- Measures accuracy over all tags in the test corpus. -- -- Accuracy is calculated as: -- -- > |tokens tagged correctly| / |all tokens| -- eval :: POSTagger -> [TaggedSentence] -> Double eval tgr oracle = let sentences = map stripTags oracle results = (posTagger tgr) sentences totalTokens = fromIntegral $ sum $ map length oracle isMatch :: (Text, Tag) -> (Text, Tag) -> Double isMatch (_, rTag) (_, oTag) | rTag == oTag = 1 | otherwise = 0 in (sum $ zipWith isMatch (concat results) (concat oracle)) / totalTokens