/* * Copyright (c) 2012 Vincent Hanquez * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of his contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef WITH_AESNI #include #include #include "aes.h" #include "aes_x86ni.h" #include "cpu.h" #ifdef ARCH_X86 #define ALIGN_UP(addr, size) (((addr) + ((size) - 1)) & (~((size) - 1))) #define ALIGNMENT(n) __attribute__((aligned(n))) static __m128i aes_128_key_expansion(__m128i key, __m128i keygened) { keygened = _mm_shuffle_epi32(keygened, _MM_SHUFFLE(3,3,3,3)); key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); return _mm_xor_si128(key, keygened); } static void aes_generate_key128(aes_key *key, uint8_t *ikey) { __m128i k[20]; uint64_t *out = (uint64_t *) key->data; int i; k[0] = _mm_loadu_si128((const __m128i*) ikey); #define AES_128_key_exp(K, RCON) aes_128_key_expansion(K, _mm_aeskeygenassist_si128(K, RCON)) k[1] = AES_128_key_exp(k[0], 0x01); k[2] = AES_128_key_exp(k[1], 0x02); k[3] = AES_128_key_exp(k[2], 0x04); k[4] = AES_128_key_exp(k[3], 0x08); k[5] = AES_128_key_exp(k[4], 0x10); k[6] = AES_128_key_exp(k[5], 0x20); k[7] = AES_128_key_exp(k[6], 0x40); k[8] = AES_128_key_exp(k[7], 0x80); k[9] = AES_128_key_exp(k[8], 0x1B); k[10] = AES_128_key_exp(k[9], 0x36); /* generate decryption keys in reverse order. * k[10] is shared by last encryption and first decryption rounds * k[20] is shared by first encryption round (and is the original user key) */ k[11] = _mm_aesimc_si128(k[9]); k[12] = _mm_aesimc_si128(k[8]); k[13] = _mm_aesimc_si128(k[7]); k[14] = _mm_aesimc_si128(k[6]); k[15] = _mm_aesimc_si128(k[5]); k[16] = _mm_aesimc_si128(k[4]); k[17] = _mm_aesimc_si128(k[3]); k[18] = _mm_aesimc_si128(k[2]); k[19] = _mm_aesimc_si128(k[1]); for (i = 0; i < 20; i++) _mm_storeu_si128(((__m128i *) out) + i, k[i]); } void aes_ni_init(aes_key *key, uint8_t *origkey, uint8_t size) { switch (size) { case 16: aes_generate_key128(key, origkey); break; default: break; } } #define PRELOAD_ENC_KEYS(k) \ __m128i K0 = _mm_loadu_si128(((__m128i *) k)+0); \ __m128i K1 = _mm_loadu_si128(((__m128i *) k)+1); \ __m128i K2 = _mm_loadu_si128(((__m128i *) k)+2); \ __m128i K3 = _mm_loadu_si128(((__m128i *) k)+3); \ __m128i K4 = _mm_loadu_si128(((__m128i *) k)+4); \ __m128i K5 = _mm_loadu_si128(((__m128i *) k)+5); \ __m128i K6 = _mm_loadu_si128(((__m128i *) k)+6); \ __m128i K7 = _mm_loadu_si128(((__m128i *) k)+7); \ __m128i K8 = _mm_loadu_si128(((__m128i *) k)+8); \ __m128i K9 = _mm_loadu_si128(((__m128i *) k)+9); \ __m128i K10 = _mm_loadu_si128(((__m128i *) k)+10); #define DO_ENC_BLOCK(m) \ m = _mm_xor_si128(m, K0); \ m = _mm_aesenc_si128(m, K1); \ m = _mm_aesenc_si128(m, K2); \ m = _mm_aesenc_si128(m, K3); \ m = _mm_aesenc_si128(m, K4); \ m = _mm_aesenc_si128(m, K5); \ m = _mm_aesenc_si128(m, K6); \ m = _mm_aesenc_si128(m, K7); \ m = _mm_aesenc_si128(m, K8); \ m = _mm_aesenc_si128(m, K9); \ m = _mm_aesenclast_si128(m, K10); #define PRELOAD_DEC_KEYS(k) \ __m128i K0 = _mm_loadu_si128(((__m128i *) k)+10+0); \ __m128i K1 = _mm_loadu_si128(((__m128i *) k)+10+1); \ __m128i K2 = _mm_loadu_si128(((__m128i *) k)+10+2); \ __m128i K3 = _mm_loadu_si128(((__m128i *) k)+10+3); \ __m128i K4 = _mm_loadu_si128(((__m128i *) k)+10+4); \ __m128i K5 = _mm_loadu_si128(((__m128i *) k)+10+5); \ __m128i K6 = _mm_loadu_si128(((__m128i *) k)+10+6); \ __m128i K7 = _mm_loadu_si128(((__m128i *) k)+10+7); \ __m128i K8 = _mm_loadu_si128(((__m128i *) k)+10+8); \ __m128i K9 = _mm_loadu_si128(((__m128i *) k)+10+9); \ __m128i K10 = _mm_loadu_si128(((__m128i *) k)+0); #define DO_DEC_BLOCK(m) \ m = _mm_xor_si128(m, K0); \ m = _mm_aesdec_si128(m, K1); \ m = _mm_aesdec_si128(m, K2); \ m = _mm_aesdec_si128(m, K3); \ m = _mm_aesdec_si128(m, K4); \ m = _mm_aesdec_si128(m, K5); \ m = _mm_aesdec_si128(m, K6); \ m = _mm_aesdec_si128(m, K7); \ m = _mm_aesdec_si128(m, K8); \ m = _mm_aesdec_si128(m, K9); \ m = _mm_aesdeclast_si128(m, K10); void aes_ni_encrypt_ecb(uint8_t *out, aes_key *key, uint8_t *in, uint32_t blocks) { __m128i *k = (__m128i *) key->data; PRELOAD_ENC_KEYS(k); while (blocks-- > 0) { __m128i m = _mm_loadu_si128((__m128i *) in); DO_ENC_BLOCK(m); _mm_storeu_si128((__m128i *) out, m); in += 16; out += 16; } } void aes_ni_decrypt_ecb(uint8_t *out, aes_key *key, uint8_t *in, uint32_t blocks) { __m128i *k = (__m128i *) key->data; PRELOAD_DEC_KEYS(k); while (blocks-- > 0) { __m128i m = _mm_loadu_si128((__m128i *) in); DO_DEC_BLOCK(m); _mm_storeu_si128((__m128i *) out, m); in += 16; out += 16; } } void aes_ni_encrypt_cbc(uint8_t *out, aes_key *key, uint8_t *_iv, uint8_t *in, uint32_t blocks) { __m128i *k = (__m128i *) key->data; __m128i iv = _mm_loadu_si128((__m128i *) _iv); PRELOAD_ENC_KEYS(k); while (blocks-- > 0) { __m128i m = _mm_loadu_si128((__m128i *) in); m = _mm_xor_si128(m, iv); DO_ENC_BLOCK(m); _mm_storeu_si128((__m128i *) out, m); iv = m; in += 16; out += 16; } } void aes_ni_decrypt_cbc(uint8_t *out, aes_key *key, uint8_t *_iv, uint8_t *in, uint32_t blocks) { __m128i *k = (__m128i *) key->data; __m128i iv = _mm_loadu_si128((__m128i *) _iv); PRELOAD_DEC_KEYS(k); while (blocks-- > 0) { __m128i m = _mm_loadu_si128((__m128i *) in); __m128i ivnext = m; DO_DEC_BLOCK(m); m = _mm_xor_si128(m, iv); _mm_storeu_si128((__m128i *) out, m); iv = ivnext; in += 16; out += 16; } } /* TO OPTIMISE: use pcmulqdq... or some faster code. * this is the lamest way of doing it, but i'm out of time. * this is basically a copy of gf_mulx in gf.c */ static __m128i gfmulx(__m128i v) { uint64_t v_[2] ALIGNMENT(16); const uint64_t gf_mask = 0x8000000000000000; _mm_store_si128((__m128i *) v_, v); uint64_t r = ((v_[1] & gf_mask) ? 0x87 : 0); v_[1] = (v_[1] << 1) | (v_[0] & gf_mask ? 1 : 0); v_[0] = (v_[0] << 1) ^ r; v = _mm_load_si128((__m128i *) v_); return v; } void aes_ni_encrypt_xts(uint8_t *out, aes_key *key1, aes_key *key2, uint8_t *_tweak, uint32_t spoint, uint8_t *in, uint32_t blocks) { __m128i tweak = _mm_loadu_si128((__m128i *) _tweak); do { __m128i *k2 = (__m128i *) key2->data; PRELOAD_ENC_KEYS(k2); DO_ENC_BLOCK(tweak); while (spoint-- > 0) tweak = gfmulx(tweak); } while (0) ; do { __m128i *k1 = (__m128i *) key1->data; PRELOAD_ENC_KEYS(k1); for ( ; blocks-- > 0; in += 16, out += 16, tweak = gfmulx(tweak)) { __m128i m = _mm_loadu_si128((__m128i *) in); m = _mm_xor_si128(m, tweak); DO_ENC_BLOCK(m); m = _mm_xor_si128(m, tweak); _mm_storeu_si128((__m128i *) out, m); } } while (0); } #endif #endif