{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} -- | Create Netlists out of normalized CoreHW Terms module CLaSH.Netlist where import Control.Lens ((.=), (<<%=)) import qualified Control.Lens as Lens import Control.Monad.State (runStateT) import Control.Monad.Writer (listen, runWriterT) import Data.Either (lefts,partitionEithers) import Data.HashMap.Lazy (HashMap) import qualified Data.HashMap.Lazy as HashMap import qualified Data.HashSet as HashSet import Data.List (elemIndex, nub) import Data.Maybe (fromMaybe) import qualified Data.Text.Lazy as Text import Unbound.LocallyNameless (Embed (..), name2String, runFreshMT, unbind, unembed, unrebind) import CLaSH.Core.DataCon (DataCon (..)) import CLaSH.Core.Literal (Literal (..)) import CLaSH.Core.Pretty (showDoc) import CLaSH.Core.Term (Pat (..), Term (..), TmName) import qualified CLaSH.Core.Term as Core import CLaSH.Core.Type (Type (..)) import CLaSH.Core.TyCon (TyConName, TyCon) import CLaSH.Core.Util (collectArgs, isVar, termType) import CLaSH.Core.Var (Id, Var (..)) import CLaSH.Netlist.BlackBox import CLaSH.Netlist.Id import CLaSH.Netlist.Types as HW import CLaSH.Netlist.Util import CLaSH.Normalize.Util import CLaSH.Primitives.Types as P import CLaSH.Util -- | Generate a hierarchical netlist out of a set of global binders with -- @topEntity@ at the top. genNetlist :: Maybe VHDLState -- ^ State for the 'CLaSH.Netlist.VHDL.VHDLM' Monad -> Maybe Int -- ^ Starting number of the component counter -> HashMap TmName (Type,Term) -- ^ Global binders -> PrimMap -- ^ Primitive definitions -> HashMap TyConName TyCon -- ^ TyCon cache -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -- ^ Hardcoded Type -> HWType translator -> Maybe Int -- ^ Symbol count -> TmName -- ^ Name of the @topEntity@ -> IO ([Component],VHDLState,Int) genNetlist vhdlStateM compCntM globals primMap tcm typeTrans mStart topEntity = do (_,s) <- runNetlistMonad vhdlStateM compCntM globals primMap tcm typeTrans $ genComponent topEntity mStart return (HashMap.elems $ _components s, _vhdlMState s, _cmpCount s) -- | Run a NetlistMonad action in a given environment runNetlistMonad :: Maybe VHDLState -- ^ State for the 'CLaSH.Netlist.VHDL.VHDLM' Monad -> Maybe Int -- ^ Starting number of the component counter -> HashMap TmName (Type,Term) -- ^ Global binders -> PrimMap -- ^ Primitive Definitions -> HashMap TyConName TyCon -- ^ TyCon cache -> (HashMap TyConName TyCon -> Type -> Maybe (Either String HWType)) -- ^ Hardcode Type -> HWType translator -> NetlistMonad a -- ^ Action to run -> IO (a,NetlistState) runNetlistMonad vhdlStateM compCntM s p tcm typeTrans = runFreshMT . flip runStateT s' . (fmap fst . runWriterT) . runNetlist where s' = NetlistState s HashMap.empty 0 (fromMaybe 0 compCntM) HashMap.empty p (fromMaybe (HashSet.empty,0,HashMap.empty) vhdlStateM) typeTrans tcm -- | Generate a component for a given function (caching) genComponent :: TmName -- ^ Name of the function -> Maybe Int -- ^ Starting value of the unique counter -> NetlistMonad Component genComponent compName mStart = do compExprM <- fmap (HashMap.lookup compName) $ Lens.use bindings case compExprM of Nothing -> error $ $(curLoc) ++ "No normalized expression found for: " ++ show compName Just (_,expr) -> makeCached compName components $ genComponentT compName expr mStart -- | Generate a component for a given function genComponentT :: TmName -- ^ Name of the function -> Term -- ^ Corresponding term -> Maybe Int -- ^ Starting value of the unique counter -> NetlistMonad Component genComponentT compName componentExpr mStart = do varCount .= fromMaybe 0 mStart componentNumber <- cmpCount <<%= (+1) let componentName' = (`Text.append` (Text.pack $ show componentNumber)) . ifThenElse Text.null (`Text.append` Text.pack "Component_") (`Text.append` Text.pack "_") . mkBasicId' True . stripDollarPrefixes . last . Text.splitOn (Text.pack ".") . Text.pack $ name2String compName tcm <- Lens.use tcCache (arguments,binders,result) <- do { normalizedM <- splitNormalized tcm componentExpr ; case normalizedM of Right normalized -> mkUniqueNormalized normalized Left err -> error err } let ids = HashMap.fromList $ map (\(Id v (Embed t)) -> (v,t)) $ arguments ++ map fst binders gamma <- (ids `HashMap.union`) . HashMap.map fst <$> Lens.use bindings varEnv .= gamma typeTrans <- Lens.use typeTranslator let resType = unsafeCoreTypeToHWType $(curLoc) typeTrans tcm $ HashMap.lookupDefault (error $ $(curLoc) ++ "resType" ++ show (result,HashMap.keys ids)) result ids argTypes = map (\(Id _ (Embed t)) -> unsafeCoreTypeToHWType $(curLoc) typeTrans tcm t) arguments let netDecls = map (\(id_,_) -> NetDecl (mkBasicId . Text.pack . name2String $ varName id_) (unsafeCoreTypeToHWType $(curLoc) typeTrans tcm . unembed $ varType id_) Nothing ) $ filter ((/= result) . varName . fst) binders (decls,clks) <- listen $ concat <$> mapM (uncurry mkDeclarations . second unembed) binders let compInps = zip (map (mkBasicId . Text.pack . name2String . varName) arguments) argTypes compOutp = (mkBasicId . Text.pack $ name2String result, resType) component = Component componentName' (nub clks) compInps compOutp (netDecls ++ decls) return component -- | Generate a list of Declarations for a let-binder mkDeclarations :: Id -- ^ LHS of the let-binder -> Term -- ^ RHS of the let-binder -> NetlistMonad [Declaration] mkDeclarations bndr (Var _ v) = mkFunApp bndr v [] mkDeclarations _ e@(Case _ _ []) = error $ $(curLoc) ++ "Not in normal form: Case-decompositions with an empty list of alternatives not supported: " ++ showDoc e mkDeclarations bndr e@(Case scrut _ [alt]) = do (pat,v) <- unbind alt (varTy,varTm) <- case v of (Var t n) -> return (t,n) _ -> error $ $(curLoc) ++ "Not in normal form: RHS of case-projection is not a variable: " ++ showDoc e typeTrans <- Lens.use typeTranslator tcm <- Lens.use tcCache scrutTy <- termType tcm scrut let sHwTy = unsafeCoreTypeToHWType $(curLoc) typeTrans tcm scrutTy (selId,decls) <- case scrut of (Var _ scrutNm) -> return (mkBasicId . Text.pack $ name2String scrutNm,[]) _ -> do (newExpr, newDecls) <- mkExpr False scrutTy scrut i <- varCount <<%= (+1) let tmpNm = "tmp_" ++ show i tmpNmT = Text.pack tmpNm tmpDecl = NetDecl tmpNmT sHwTy Nothing tmpAssn = Assignment tmpNmT newExpr return (tmpNmT,newDecls ++ [tmpDecl,tmpAssn]) let dstId = mkBasicId . Text.pack . name2String $ varName bndr altVarId = mkBasicId . Text.pack $ name2String varTm modifier = case pat of DataPat (Embed dc) ids -> let (_,tms) = unrebind ids in case elemIndex (Id varTm (Embed varTy)) tms of Nothing -> Nothing Just fI -> Just (Indexed (unsafeCoreTypeToHWType $(curLoc) typeTrans tcm scrutTy,dcTag dc - 1,fI)) _ -> error $ $(curLoc) ++ "Not in normal form: Unexpected pattern in case-projection: " ++ showDoc e extractExpr = Identifier (maybe altVarId (const selId) modifier) modifier return (decls ++ [Assignment dstId extractExpr]) mkDeclarations bndr (Case scrut altTy alts) = do alts' <- mapM unbind alts tcm <- Lens.use tcCache scrutTy <- termType tcm scrut scrutHTy <- unsafeCoreTypeToHWTypeM $(curLoc) scrutTy (scrutExpr,scrutDecls) <- first (mkScrutExpr scrutHTy (fst (last alts'))) <$> mkExpr False scrutTy scrut (exprs,altsDecls) <- (second concat . unzip) <$> mapM (mkCondExpr scrutHTy) alts' let dstId = mkBasicId . Text.pack . name2String $ varName bndr return $! scrutDecls ++ altsDecls ++ [CondAssignment dstId scrutExpr (reverse exprs)] where mkCondExpr :: HWType -> (Pat,Term) -> NetlistMonad ((Maybe Expr,Expr),[Declaration]) mkCondExpr scrutHTy (pat,alt) = do (altExpr,altDecls) <- mkExpr False altTy alt (,altDecls) <$> case pat of DefaultPat -> return (Nothing,altExpr) DataPat (Embed dc) _ -> return (Just (dcToLiteral scrutHTy (dcTag dc)),altExpr) LitPat (Embed (IntegerLiteral i)) -> return (Just (HW.Literal Nothing (NumLit $ fromInteger i)),altExpr) _ -> error $ $(curLoc) ++ "Not an integer literal in LitPat" mkScrutExpr :: HWType -> Pat -> Expr -> Expr mkScrutExpr scrutHTy pat scrutE = case pat of DataPat (Embed dc) _ -> let modifier = Just (DC (scrutHTy,dcTag dc - 1)) in case scrutE of Identifier scrutId _ -> Identifier scrutId modifier BlackBoxE bbE _ -> BlackBoxE bbE modifier _ -> error $ $(curLoc) ++ "Not in normal form: Not a variable reference or primitive as subject of a case-statement" _ -> scrutE mkDeclarations bndr app = let (appF,(args,tyArgs)) = second partitionEithers $ collectArgs app in case appF of Var _ f | null tyArgs -> mkFunApp bndr f args | otherwise -> error $ $(curLoc) ++ "Not in normal form: Var-application with Type arguments" _ -> do (exprApp,declsApp) <- mkExpr False (unembed $ varType bndr) app let dstId = mkBasicId . Text.pack . name2String $ varName bndr return (declsApp ++ [Assignment dstId exprApp]) -- | Generate a list of Declarations for a let-binder where the RHS is a function application mkFunApp :: Id -- ^ LHS of the let-binder -> TmName -- ^ Name of the applied function -> [Term] -- ^ Function arguments -> NetlistMonad [Declaration] mkFunApp dst fun args = do normalized <- Lens.use bindings case HashMap.lookup fun normalized of Just _ -> do (Component compName hidden compInps compOutp _) <- preserveVarEnv $ genComponent fun Nothing if length args == length compInps then do tcm <- Lens.use tcCache argTys <- mapM (termType tcm) args (argExprs,argDecls) <- fmap (second concat . unzip) $! mapM (\(e,t) -> mkExpr False t e) (zip args argTys) let dstId = mkBasicId . Text.pack . name2String $ varName dst hiddenAssigns = map (\(i,_) -> (i,Identifier i Nothing)) hidden inpAssigns = zip (map fst compInps) argExprs outpAssign = (fst compOutp,Identifier dstId Nothing) instLabel = Text.concat [compName, Text.pack "_", dstId] instDecl = InstDecl compName instLabel (outpAssign:hiddenAssigns ++ inpAssigns) return (argDecls ++ [instDecl]) else error $ $(curLoc) ++ "under-applied normalized function" Nothing -> case args of [] -> do let dstId = mkBasicId . Text.pack . name2String $ varName dst return [Assignment dstId (Identifier (mkBasicId . Text.pack $ name2String fun) Nothing)] _ -> error $ $(curLoc) ++ "Unknown function: " ++ showDoc fun -- | Generate an expression for a term occurring on the RHS of a let-binder mkExpr :: Bool -- ^ Treat BlackBox expression as declaration -> Type -- ^ Type of the LHS of the let-binder -> Term -- ^ Term to convert to an expression -> NetlistMonad (Expr,[Declaration]) -- ^ Returned expression and a list of generate BlackBox declarations mkExpr _ _ (Core.Literal lit) = return (HW.Literal Nothing . NumLit $ fromInteger $! i,[]) where i = case lit of (IntegerLiteral i') -> i' _ -> error $ $(curLoc) ++ "not an integer literal" mkExpr bbEasD ty app = do let (appF,args) = collectArgs app tmArgs = lefts args hwTy <- unsafeCoreTypeToHWTypeM $(curLoc) ty case appF of Data dc | all (\e -> isConstant e || isVar e) tmArgs -> mkDcApplication hwTy dc tmArgs | otherwise -> error $ $(curLoc) ++ "Not in normal form: DataCon-application with non-Simple arguments" Prim nm _ -> first fst <$> mkPrimitive False bbEasD nm args ty Var _ f | null tmArgs -> return (Identifier (mkBasicId . Text.pack $ name2String f) Nothing,[]) | otherwise -> error $ $(curLoc) ++ "Not in normal form: top-level binder in argument position: " ++ showDoc app _ -> error $ $(curLoc) ++ "Not in normal form: application of a Let/Lam/Case: " ++ showDoc app -- | Generate an expression for a DataCon application occurring on the RHS of a let-binder mkDcApplication :: HWType -- ^ HWType of the LHS of the let-binder -> DataCon -- ^ Applied DataCon -> [Term] -- ^ DataCon Arguments -> NetlistMonad (Expr,[Declaration]) -- ^ Returned expression and a list of generate BlackBox declarations mkDcApplication dstHType dc args = do tcm <- Lens.use tcCache argTys <- mapM (termType tcm) args (argExprs,argDecls) <- fmap (second concat . unzip) $! mapM (\(e,t) -> mkExpr True t e) (zip args argTys) argHWTys <- mapM coreTypeToHWTypeM argTys fmap (,argDecls) $! case (argHWTys,argExprs) of -- Is the DC just a newtype wrapper? ([Just argHwTy],[argExpr]) | argHwTy == dstHType -> return argExpr _ -> case dstHType of SP _ dcArgPairs -> do let dcI = dcTag dc - 1 dcArgs = snd $ indexNote ($(curLoc) ++ "No DC with tag: " ++ show dcI) dcArgPairs dcI case compare (length dcArgs) (length argExprs) of EQ -> return (HW.DataCon dstHType (Just $ DC (dstHType,dcI)) argExprs) LT -> error $ $(curLoc) ++ "Over-applied constructor" GT -> error $ $(curLoc) ++ "Under-applied constructor" Product _ dcArgs -> case compare (length dcArgs) (length argExprs) of EQ -> return (HW.DataCon dstHType (Just $ DC (dstHType,0)) argExprs) LT -> error $ $(curLoc) ++ "Over-applied constructor" GT -> error $ $(curLoc) ++ "Under-applied constructor" Sum _ _ -> return (HW.DataCon dstHType (Just $ DC (dstHType,dcTag dc - 1)) []) Bool -> let dc' = case dcTag dc of 1 -> HW.Literal Nothing (BoolLit False) 2 -> HW.Literal Nothing (BoolLit True) tg -> error $ $(curLoc) ++ "unknown bool literal: " ++ showDoc dc ++ "(tag: " ++ show tg ++ ")" in return dc' Vector 0 _ -> return (HW.DataCon dstHType Nothing []) -- Note [Vector Wrapper] -- The Vector type has two versions of the cons constructor: -- * The 'normal' one, which takes a coercion as its first argument, -- followed by the element and the vector -- * The wrapper one, which just takes the element and vector argument -- -- We need to account for both occurrences, that's why we have the two -- case statements below: Vector 1 _ -> case argExprs of [_,e,_] -> return (HW.DataCon dstHType (Just VecAppend) [e]) _ -> return (HW.DataCon dstHType (Just VecAppend) [head argExprs]) Vector _ _ -> case argExprs of [_,e1,e2] -> return (HW.DataCon dstHType (Just VecAppend) [e1,e2]) _ -> return (HW.DataCon dstHType (Just VecAppend) argExprs) _ -> error $ $(curLoc) ++ "mkDcApplication undefined for: " ++ show (dstHType,dc,args,argHWTys)