{-| Copyright : (C) 2012-2016, University of Twente License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij Utility functions used by the normalisation transformations -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TemplateHaskell #-} module Clash.Normalize.Util where import Control.Lens ((&),(+~),(%=),(^.),_5) import qualified Control.Lens as Lens import Data.HashMap.Lazy (HashMap) import qualified Data.HashMap.Lazy as HashMap import qualified Data.List as List import Unbound.Generics.LocallyNameless (Fresh, unembed ,unrec) import Unbound.Generics.LocallyNameless.Unsafe (unsafeUnbind) import Clash.Core.FreeVars (termFreeIds) import Clash.Core.Term (Term (..), TmOccName) import Clash.Core.TyCon (TyCon, TyConOccName) import Clash.Core.Util (collectArgs, isClockOrReset, isPolyFun, termType) import Clash.Driver.Types (BindingMap) import Clash.Normalize.Types import Clash.Rewrite.Types (bindings,extra,tcCache) import Clash.Rewrite.Util (specialise) -- | Determine if a function is already inlined in the context of the 'NetlistMonad' alreadyInlined :: TmOccName -- ^ Function we want to inline -> TmOccName -- ^ Function in which we want to perform the inlining -> NormalizeMonad (Maybe Int) alreadyInlined f cf = do inlinedHM <- Lens.use inlineHistory case HashMap.lookup cf inlinedHM of Nothing -> return Nothing Just inlined' -> return (HashMap.lookup f inlined') addNewInline :: TmOccName -- ^ Function we want to inline -> TmOccName -- ^ Function in which we want to perform the inlining -> NormalizeMonad () addNewInline f cf = inlineHistory %= HashMap.insertWith (\_ hm -> HashMap.insertWith (+) f 1 hm) cf (HashMap.singleton f 1) -- | Specialize under the Normalization Monad specializeNorm :: NormRewrite specializeNorm = specialise specialisationCache specialisationHistory specialisationLimit -- | Determine if a term is closed isClosed :: Fresh m => HashMap TyConOccName TyCon -> Term -> m Bool isClosed tcm = fmap not . isPolyFun tcm -- | Determine if a term represents a constant isConstant :: Term -> Bool isConstant e = case collectArgs e of (Data _, args) -> all (either isConstant (const True)) args (Prim _ _, args) -> all (either isConstant (const True)) args (Literal _,_) -> True _ -> False isConstantNotClockReset :: Term -> NormalizeSession Bool isConstantNotClockReset e = do tcm <- Lens.view tcCache eTy <- termType tcm e if isClockOrReset tcm eTy then return False else return (isConstant e) -- | Assert whether a name is a reference to a recursive binder. isRecursiveBndr :: TmOccName -> NormalizeSession Bool isRecursiveBndr f = do cg <- Lens.use (extra.recursiveComponents) case HashMap.lookup f cg of Just isR -> return isR Nothing -> do fBodyM <- HashMap.lookup f <$> Lens.use bindings case fBodyM of Nothing -> return False Just (_,_,_,_,fBody) -> do -- There are no global mutually-recursive functions, only self-recursive -- ones, so checking whether 'f' is part of the free variables of the -- body of 'f' is sufficient. let used = Lens.toListOf termFreeIds fBody isR = f `elem` used (extra.recursiveComponents) %= HashMap.insert f isR return isR -- | A call graph counts the number of occurrences that a functions 'g' is used -- in 'f'. type CallGraph = HashMap TmOccName (HashMap TmOccName Word) -- | Create a call graph for a set of global binders, given a root callGraph :: BindingMap -> TmOccName -> CallGraph callGraph bndrs = go HashMap.empty where go cg root | Nothing <- HashMap.lookup root cg , Just rootTm <- HashMap.lookup root bndrs = let used = List.foldl' (\m k -> HashMap.insertWith (+) k 1 m) HashMap.empty (Lens.toListOf termFreeIds (rootTm ^. _5)) cg' = HashMap.insert root used cg in List.foldl' go cg' (HashMap.keys used) go cg _ = cg -- | Give a "performance/size" classification of a function in normal form. classifyFunction :: Term -> TermClassification classifyFunction = go (TermClassification 0 0 0) where go !c (Lam b) = let (_,e) = unsafeUnbind b in go c e go !c (TyLam b) = let (_,e) = unsafeUnbind b in go c e go !c (Letrec b) = let (bndsR,_) = unsafeUnbind b es = map (unembed . snd) (unrec bndsR) in List.foldl' go c es go !c e@(App _ _) = case fst (collectArgs e) of Prim _ _ -> c & primitive +~ 1 Var _ _ -> c & function +~ 1 _ -> c go !c (Case _ _ alts) = case alts of (_:_:_) -> c & selection +~ 1 _ -> c go c _ = c -- | Determine whether a function adds a lot of hardware or not. -- -- It is considered expensive when it has 2 or more of the following components: -- -- * functions -- * primitives -- * selections (multiplexers) isCheapFunction :: Term -> Bool isCheapFunction tm = case classifyFunction tm of TermClassification {..} | _function <= 1 -> _primitive <= 0 && _selection <= 0 | _primitive <= 1 -> _function <= 0 && _selection <= 0 | _selection <= 1 -> _function <= 0 && _primitive <= 0 | otherwise -> False