{-| Copyright : (C) 2015-2016, University of Twente License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij Helper functions for the 'disjointExpressionConsolidation' transformation The 'disjointExpressionConsolidation' transformation lifts applications of global binders out of alternatives of case-statements. e.g. It converts: > case x of > A -> f 3 y > B -> f x x > C -> h x into: > let f_arg0 = case x of {A -> 3; B -> x} > f_arg1 = case x of {A -> y; B -> x} > f_out = f f_arg0 f_arg1 > in case x of > A -> f_out > B -> f_out > C -> h x -} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecursiveDo #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE ViewPatterns #-} module Clash.Normalize.DEC (collectGlobals ,isDisjoint ,mkDisjointGroup ) where -- external import Control.Concurrent.Supply (splitSupply) import qualified Control.Lens as Lens import Data.Bits ((.&.),complement) import qualified Data.Either as Either import qualified Data.Foldable as Foldable import qualified Data.HashMap.Strict as HashMap import qualified Data.IntMap.Strict as IM import qualified Data.List as List import qualified Data.Map.Strict as Map import qualified Data.Maybe as Maybe import Data.Set (Set) import qualified Data.Set as Set import qualified Data.Set.Lens as Lens import Unbound.Generics.LocallyNameless (Bind, bind, embed, fv, unbind, unembed, unrec) import qualified Unbound.Generics.LocallyNameless as Unbound -- internal import Clash.Core.DataCon (DataCon, dcTag) import Clash.Core.Evaluator (whnf') import Clash.Core.FreeVars (termFreeIds, typeFreeVars) import Clash.Core.Name (Name (..), string2InternalName) import Clash.Core.Literal (Literal (..)) import Clash.Core.Term (LetBinding, Pat (..), Term (..), TmOccName) import Clash.Core.TyCon (tyConDataCons) import Clash.Core.Type (Type, isPolyFunTy, mkTyConApp, splitFunForallTy) import Clash.Core.Util (collectArgs, mkApps, termType) import Clash.Normalize.Types (NormalizeState) import Clash.Normalize.Util (isConstant) import Clash.Rewrite.Types (RewriteMonad, bindings, evaluator, tcCache, tupleTcCache, uniqSupply) import Clash.Rewrite.Util (mkInternalVar, mkSelectorCase, isUntranslatableType) import Clash.Util data CaseTree a = Leaf a | LB [LetBinding] (CaseTree a) | Branch Term [(Pat,CaseTree a)] deriving (Eq,Show,Functor,Foldable) -- | Test if a 'CaseTree' collected from an expression indicates that -- application of a global binder is disjoint: occur in separate branches of a -- case-expression. isDisjoint :: CaseTree ([Either Term Type]) -> Bool isDisjoint (Branch _ [_]) = False isDisjoint ct = go ct where go (Leaf _) = False go (LB _ ct') = go ct' go (Branch _ []) = False go (Branch _ [(_,x)]) = go x go b@(Branch _ (_:_:_)) = allEqual (map Either.rights (Foldable.toList b)) -- Remove empty branches from a 'CaseTree' removeEmpty :: Eq a => CaseTree [a] -> CaseTree [a] removeEmpty l@(Leaf _) = l removeEmpty (LB lb ct) = case removeEmpty ct of Leaf [] -> Leaf [] ct' -> LB lb ct' removeEmpty (Branch s bs) = case filter ((/= (Leaf [])) . snd) (map (second removeEmpty) bs) of [] -> Leaf [] bs' -> Branch s bs' -- | Test if all elements in a list are equal to each other. allEqual :: Eq a => [a] -> Bool allEqual [] = True allEqual (x:xs) = all (== x) xs -- | Collect 'CaseTree's for (potentially) disjoint applications of globals out -- of an expression. Also substitute truly disjoint applications of globals by a -- reference to a lifted out application. collectGlobals :: Set TmOccName -> [(Term,Term)] -- ^ Substitution of (applications of) a global -- binder by a reference to a lifted term. -> [Term] -- ^ List of already seen global binders -> Term -- ^ The expression -> RewriteMonad NormalizeState (Term,[(Term,([Term],CaseTree [(Either Term Type)]))]) collectGlobals inScope substitution seen (Case scrut ty alts) = do rec (alts' ,collected) <- collectGlobalsAlts inScope substitution seen scrut' alts (scrut',collected') <- collectGlobals inScope substitution (map fst collected ++ seen) scrut return (Case scrut' ty alts',collected ++ collected') collectGlobals inScope substitution seen e@(collectArgs -> (fun, args@(_:_))) | not (isConstant e) = do tcm <- Lens.view tcCache bndrs <- Lens.use bindings primEval <- Lens.view evaluator ids <- Lens.use uniqSupply let (ids1,ids2) = splitSupply ids uniqSupply Lens..= ids2 let eval = whnf' primEval bndrs tcm ids1 False eTy <- termType tcm e untran <- isUntranslatableType False eTy case untran of -- Don't lift out non-representable values, because they cannot be let-bound -- in our desired normal form. False -> case interestingToLift inScope eval fun args of Just fun' | fun' `notElem` seen -> do (args',collected) <- collectGlobalsArgs inScope substitution (fun':seen) args let e' = Maybe.fromMaybe (mkApps fun' args') (List.lookup fun' substitution) -- This function is lifted out an environment with the currently 'seen' -- binders. When we later apply substitution, we need to start with this -- environment, otherwise we perform incorrect substitutions in the -- arguments. return (e',(fun',(seen,Leaf args')):collected) _ -> do (args',collected) <- collectGlobalsArgs inScope substitution seen args return (mkApps fun args',collected) _ -> return (e,[]) -- FIXME: This duplicates A LOT of let-bindings, where I just pray that after -- the ANF, CSE, and DeadCodeRemoval pass all duplicates are removed. -- -- I think we should be able to do better, but perhaps we cannot fix it here. collectGlobals inScope substitution seen (Letrec b) = do (unrec -> lbs,body) <- unbind b (body',collected) <- collectGlobals inScope substitution seen body (lbs',collected') <- collectGlobalsLbs inScope substitution (map fst collected ++ seen) lbs return (Letrec (bind (Unbound.rec lbs') body') ,map (second (second (LB lbs'))) (collected ++ collected') ) collectGlobals _ _ _ e = return (e,[]) -- | Collect 'CaseTree's for (potentially) disjoint applications of globals out -- of a list of application arguments. Also substitute truly disjoint -- applications of globals by a reference to a lifted out application. collectGlobalsArgs :: Set TmOccName -> [(Term,Term)] -- ^ Substitution of (applications of) a global -- binder by a reference to a lifted term. -> [Term] -- ^ List of already seen global binders -> [Either Term Type] -- ^ The list of arguments -> RewriteMonad NormalizeState ([Either Term Type] ,[(Term,([Term],CaseTree [(Either Term Type)]))] ) collectGlobalsArgs inScope substitution seen args = do (_,(args',collected)) <- second unzip <$> mapAccumLM go seen args return (args',concat collected) where go s (Left tm) = do (tm',collected) <- collectGlobals inScope substitution s tm return (map fst collected ++ s,(Left tm',collected)) go s (Right ty) = return (s,(Right ty,[])) -- | Collect 'CaseTree's for (potentially) disjoint applications of globals out -- of a list of alternatives. Also substitute truly disjoint applications of -- globals by a reference to a lifted out application. collectGlobalsAlts :: Set TmOccName -> [(Term,Term)] -- ^ Substitution of (applications of) a global -- binder by a reference to a lifted term. -> [Term] -- ^ List of already seen global binders -> Term -- ^ The subject term -> [Bind Pat Term] -- ^ The list of alternatives -> RewriteMonad NormalizeState ([Bind Pat Term] ,[(Term,([Term],CaseTree [(Either Term Type)]))] ) collectGlobalsAlts inScope substitution seen scrut alts = do (alts',collected) <- unzip <$> mapM go alts let collectedM = map (Map.fromList . map (second (second (:[])))) collected collectedUN = Map.unionsWith (\(l1,r1) (l2,r2) -> (List.nub (l1 ++ l2),r1 ++ r2)) collectedM collected' = map (second (second (Branch scrut))) (Map.toList collectedUN) return (alts',collected') where go pe = do (p,e) <- unbind pe (e',collected) <- collectGlobals inScope substitution seen e return (bind p e',map (second (second (p,))) collected) -- | Collect 'CaseTree's for (potentially) disjoint applications of globals out -- of a list of let-bindings. Also substitute truly disjoint applications of -- globals by a reference to a lifted out application. collectGlobalsLbs :: Set TmOccName -> [(Term,Term)] -- ^ Substitution of (applications of) a global -- binder by a reference to a lifted term. -> [Term] -- ^ List of already seen global binders -> [LetBinding] -- ^ The list let-bindings -> RewriteMonad NormalizeState ([LetBinding] ,[(Term,([Term],CaseTree [(Either Term Type)]))] ) collectGlobalsLbs inScope substitution seen lbs = do (_,(lbs',collected)) <- second unzip <$> mapAccumLM go seen lbs return (lbs',concat collected) where go :: [Term] -> LetBinding -> RewriteMonad NormalizeState ([Term] ,(LetBinding ,[(Term,([Term],CaseTree [(Either Term Type)]))] ) ) go s (id_,unembed -> e) = do (e',collected) <- collectGlobals inScope substitution s e return (map fst collected ++ s,((id_,embed e'),collected)) -- | Given a case-tree corresponding to a disjoint interesting \"term-in-a- -- function-position\", return a let-expression: where the let-binding holds -- a case-expression selecting between the uncommon arguments of the case-tree, -- and the body is an application of the term applied to the common arguments of -- the case tree, and projections of let-binding corresponding to the uncommon -- argument positions. mkDisjointGroup :: Set TmOccName -- ^ Current free variables. -> (Term,([Term],CaseTree [(Either Term Type)])) -- ^ Case-tree of arguments belonging to the applied term. -> RewriteMonad NormalizeState (Term,[Term]) mkDisjointGroup fvs (fun,(seen,cs)) = do let argss = Foldable.toList cs argssT = zip [0..] (List.transpose argss) (commonT,uncommonT) = List.partition (isCommon fvs . snd) argssT common = map (second head) commonT uncommon = map (Either.lefts) (List.transpose (map snd uncommonT)) cs' = fmap (zip [0..]) cs cs'' = removeEmpty $ fmap (Either.lefts . map snd) (if null common then cs' else fmap (filter (`notElem` common)) cs') tcm <- Lens.view tcCache (uncommonCaseM,uncommonProjections) <- case uncommon of -- only common arguments: do nothing. [] -> return (Nothing,[]) -- Create selectors and projections (uc:_) -> do argTys <- mapM (termType tcm) uc disJointSelProj argTys cs'' let newArgs = mkDJArgs 0 common uncommonProjections case uncommonCaseM of Just lb -> return (Letrec (bind (Unbound.rec [lb]) (mkApps fun newArgs)), seen) Nothing -> return (mkApps fun newArgs, seen) -- | Create a single selector for all the representable uncommon arguments by -- selecting between tuples. This selector is only ('Just') created when the -- number of representable uncommmon arguments is larger than one, otherwise it -- is not ('Nothing'). -- -- It also returns: -- -- * For all the non-representable uncommon arguments: a selector -- * For all the representable uncommon arguments: a projection out of the tuple -- created by the larger selector. If this larger selector does not exist, a -- single selector is created for the single representable uncommon argument. disJointSelProj :: [Type] -- ^ Types of the arguments -> CaseTree [Term] -- The case-tree of arguments -> RewriteMonad NormalizeState (Maybe LetBinding,[Term]) disJointSelProj _ (Leaf []) = return (Nothing,[]) disJointSelProj argTys cs = do let maxIndex = length argTys - 1 css = map (\i -> fmap ((:[]) . (!!i)) cs) [0..maxIndex] (untran,tran) <- partitionM (isUntranslatableType False . snd) (zip [0..] argTys) let untranCs = map (css!!) (map fst untran) untranSels = zipWith (\(_,ty) cs' -> genCase ty Nothing [] cs') untran untranCs (lbM,projs) <- case tran of [] -> return (Nothing,[]) [(i,ty)] -> return (Nothing,[genCase ty Nothing [] (css!!i)]) tys -> do tcm <- Lens.view tcCache tupTcm <- Lens.view tupleTcCache let m = length tys Just tupTcNm = IM.lookup m tupTcm Just tupTc = HashMap.lookup (nameOcc tupTcNm) tcm [tupDc] = tyConDataCons tupTc (tyIxs,tys') = unzip tys tupTy = mkTyConApp tupTcNm tys' cs' = fmap (\es -> map (es !!) tyIxs) cs djCase = genCase tupTy (Just tupDc) tys' cs' (scrutId,scrutVar) <- mkInternalVar (string2InternalName "tupIn") tupTy projections <- mapM (mkSelectorCase ($(curLoc) ++ "disJointSelProj") tcm scrutVar (dcTag tupDc)) [0..m-1] return (Just (scrutId,embed djCase),projections) let selProjs = tranOrUnTran 0 (zip (map fst untran) untranSels) projs return (lbM,selProjs) where tranOrUnTran _ [] projs = projs tranOrUnTran _ sels [] = map snd sels tranOrUnTran n ((ut,s):uts) (p:projs) | n == ut = s : tranOrUnTran (n+1) uts (p:projs) | otherwise = p : tranOrUnTran (n+1) ((ut,s):uts) projs isCommon :: Set TmOccName -> [Either Term Type] -> Bool isCommon _ [] = True isCommon _ (Right ty:tys) = Set.null (Lens.setOf typeFreeVars ty) && allEqual (Right ty:tys) isCommon fvs (Left tm:tms) = Set.null (Lens.setOf termFreeIds tm Set.\\ fvs) && allEqual (Left tm:tms) -- | Create a list of arguments given a map of positions to common arguments, -- and a list of arguments mkDJArgs :: Int -- ^ Current position -> [(Int,Either Term Type)] -- ^ map from position to common argument -> [Term] -- ^ (projections for) uncommon arguments -> [Either Term Type] mkDJArgs _ cms [] = map snd cms mkDJArgs _ [] uncms = map Left uncms mkDJArgs n ((m,x):cms) (y:uncms) | n == m = x : mkDJArgs (n+1) cms (y:uncms) | otherwise = Left y : mkDJArgs (n+1) ((m,x):cms) uncms -- | Create a case-expression that selects between the uncommon arguments given -- a case-tree genCase :: Type -- ^ Type of the alternatives -> Maybe DataCon -- ^ DataCon to pack multiple arguments -> [Type] -- ^ Types of the arguments -> CaseTree [Term] -- ^ CaseTree of arguments -> Term genCase ty dcM argTys = go where go (Leaf tms) = case dcM of Just dc -> mkApps (Data dc) (map Right argTys ++ map Left tms) _ -> head tms go (LB lb ct) = Letrec (bind (Unbound.rec lb) (go ct)) go (Branch scrut [(p,ct)]) = let ct' = go ct alt = bind p ct' in case Lens.setOf termFreeIds ct' == Lens.setOf fv alt of True -> ct' _ -> Case scrut ty [alt] go (Branch scrut pats) = Case scrut ty (map (\(p,ct) -> bind p (go ct)) pats) -- | Determine if a term in a function position is interesting to lift out of -- of a case-expression. -- -- This holds for all global functions, and certain primitives. Currently those -- primitives are: -- -- * All non-power-of-two multiplications -- * All division-like operations with a non-power-of-two divisor interestingToLift :: Set TmOccName -- ^ in scope -> (Term -> Term) -- ^ Evaluator -> Term -- ^ Term in function position -> [Either Term Type] -- ^ Arguments -> Maybe Term interestingToLift inScope _ e@(Var _ nm) _ = if nameOcc nm `Set.member` inScope then Just e else Nothing interestingToLift inScope eval e@(Prim nm pty) args = case List.lookup nm interestingPrims of Just t | t || not (all isConstant lArgs) -> Just e _ -> if isHOTy pty then if not . null . Maybe.catMaybes $ map (uncurry (interestingToLift inScope eval) . collectArgs ) lArgs then Just e else Nothing else Nothing where interestingPrims = [("Clash.Sized.Internal.BitVector.*#",tailNonPow2) ,("Clash.Sized.Internal.BitVector.times#",tailNonPow2) ,("Clash.Sized.Internal.BitVector.quot#",lastNotPow2) ,("Clash.Sized.Internal.BitVector.rem#",lastNotPow2) ,("Clash.Sized.Internal.Index.*#",tailNonPow2) ,("Clash.Sized.Internal.Index.quot#",lastNotPow2) ,("Clash.Sized.Internal.Index.rem#",lastNotPow2) ,("Clash.Sized.Internal.Signed.*#",tailNonPow2) ,("Clash.Sized.Internal.Signed.times#",tailNonPow2) ,("Clash.Sized.Internal.Signed.rem#",lastNotPow2) ,("Clash.Sized.Internal.Signed.quot#",lastNotPow2) ,("Clash.Sized.Internal.Signed.div#",lastNotPow2) ,("Clash.Sized.Internal.Signed.mod#",lastNotPow2) ,("Clash.Sized.Internal.Unsigned.*#",tailNonPow2) ,("Clash.Sized.Internal.Unsigned.times#",tailNonPow2) ,("Clash.Sized.Internal.Unsigned.quot#",lastNotPow2) ,("Clash.Sized.Internal.Unsigned.rem#",lastNotPow2) ,("GHC.Base.quotInt",lastNotPow2) ,("GHC.Base.remInt",lastNotPow2) ,("GHC.Base.divInt",lastNotPow2) ,("GHC.Base.modInt",lastNotPow2) ,("GHC.Classes.divInt#",lastNotPow2) ,("GHC.Classes.modInt#",lastNotPow2) ,("GHC.Integer.Type.timesInteger",allNonPow2) ,("GHC.Integer.Type.divInteger",lastNotPow2) ,("GHC.Integer.Type.modInteger",lastNotPow2) ,("GHC.Integer.Type.quotInteger",lastNotPow2) ,("GHC.Integer.Type.remInteger",lastNotPow2) ,("GHC.Prim.*#",allNonPow2) ,("GHC.Prim.quotInt#",lastNotPow2) ,("GHC.Prim.remInt#",lastNotPow2) ] lArgs = Either.lefts args allNonPow2 = all (not . termIsPow2) lArgs tailNonPow2 = case lArgs of [] -> True _ -> all (not . termIsPow2) (tail lArgs) lastNotPow2 = case lArgs of [] -> True _ -> not (termIsPow2 (last lArgs)) termIsPow2 e' = case eval e' of Literal (IntegerLiteral n) -> isPow2 n a -> case collectArgs a of (Prim nm' _,[Right _,Left _,Left (Literal (IntegerLiteral n))]) | isFromInteger nm' -> isPow2 n _ -> False isPow2 x = x /= 0 && (x .&. (complement x + 1)) == x isFromInteger x = x `elem` ["Clash.Sized.Internal.BitVector.fromInteger##" ,"Clash.Sized.Internal.BitVector.fromInteger#" ,"Clash.Sized.Integer.Index.fromInteger" ,"Clash.Sized.Internal.Signed.fromInteger#" ,"Clash.Sized.Internal.Unsigned.fromInteger#" ] isHOTy t = case splitFunForallTy t of (args',_) -> any isPolyFunTy (Either.rights args') interestingToLift _ _ _ _ = Nothing