{-| Copyright : © Christiaan Baaij, 2015-2016 Licence : Creative Commons 4.0 (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) -} {-# LANGUAGE NoImplicitPrelude, CPP, TemplateHaskell, DataKinds #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} module CLaSH.Examples ( -- * Decoders and Encoders -- $decoders_and_encoders -- * Counters -- $counters -- * Parity and CRC -- $parity_and_crc -- * UART model -- $uart ) where import CLaSH.Prelude import Control.Lens import Control.Monad import Test.QuickCheck #ifdef DOCLINKS import Control.Monad.Trans.State #endif {- $setup >>> :set -XDataKinds -XFlexibleContexts -XBinaryLiterals -XTypeFamilies -XTemplateHaskell -XRecordWildCards >>> :set -fplugin GHC.TypeLits.Normalise >>> import CLaSH.Prelude >>> import Test.QuickCheck >>> import Control.Lens >>> import Control.Monad.Trans.State >>> :{ let decoderCase :: Bool -> BitVector 4 -> BitVector 16 decoderCase enable binaryIn | enable = case binaryIn of 0x0 -> 0x0001 0x1 -> 0x0002 0x2 -> 0x0004 0x3 -> 0x0008 0x4 -> 0x0010 0x5 -> 0x0020 0x6 -> 0x0040 0x7 -> 0x0080 0x8 -> 0x0100 0x9 -> 0x0200 0xA -> 0x0400 0xB -> 0x0800 0xC -> 0x1000 0xD -> 0x2000 0xE -> 0x4000 0xF -> 0x8000 decoderCase _ _ = 0 :} >>> :{ let decoderShift :: Bool -> BitVector 4 -> BitVector 16 decoderShift enable binaryIn = if enable then 1 `shiftL` (fromIntegral binaryIn) else 0 :} >>> :{ let encoderCase :: Bool -> BitVector 16 -> BitVector 4 encoderCase enable binaryIn | enable = case binaryIn of 0x0001 -> 0x0 0x0002 -> 0x1 0x0004 -> 0x2 0x0008 -> 0x3 0x0010 -> 0x4 0x0020 -> 0x5 0x0040 -> 0x6 0x0080 -> 0x7 0x0100 -> 0x8 0x0200 -> 0x9 0x0400 -> 0xA 0x0800 -> 0xB 0x1000 -> 0xC 0x2000 -> 0xD 0x4000 -> 0xE 0x8000 -> 0xF encoderCase _ _ = 0 :} >>> :{ let upCounter :: Signal Bool -> Signal (Unsigned 8) upCounter enable = s where s = register 0 (mux enable (s + 1) s) :} >>> :{ let upCounterLdT s (ld,en,dIn) = (s',s) where s' | ld = dIn | en = s + 1 | otherwise = s :} >>> :{ let upCounterLd :: Signal (Bool,Bool,Unsigned 8) -> Signal (Unsigned 8) upCounterLd = mealy upCounterLdT 0 :} >>> :{ let upDownCounter :: Signal Bool -> Signal (Unsigned 8) upDownCounter upDown = s where s = register 0 (mux upDown (s + 1) (s - 1)) :} >>> :{ let lfsrF' :: BitVector 16 -> BitVector 16 lfsrF' s = feedback ++# slice d15 d1 s where feedback = s!5 `xor` s!3 `xor` s!2 `xor` s!0 :} >>> :{ let lfsrF :: BitVector 16 -> Signal Bit lfsrF seed = msb <$> r where r = register seed (lfsrF' <$> r) :} >>> :{ let lfsrGP taps regs = zipWith xorM taps (fb +>> regs) where fb = last regs xorM i x | i = x `xor` fb | otherwise = x :} >>> :{ let lfsrG :: BitVector 16 -> Signal Bit lfsrG seed = last (unbundle r) where r = register (unpack seed) (lfsrGP (unpack 0b0011010000000000) <$> r) :} >>> :{ let grayCounter :: Signal Bool -> Signal (BitVector 8) grayCounter en = gray <$> upCounter en where gray xs = msb xs ++# xor (slice d7 d1 xs) (slice d6 d0 xs) :} >>> :{ let oneHotCounter :: Signal Bool -> Signal (BitVector 8) oneHotCounter enable = s where s = register 1 (mux enable (rotateL <$> s <*> 1) s) :} >>> :{ let parity :: Unsigned 8 -> Bit parity data_in = reduceXor data_in :} >>> :{ let crcT bv dIn = replaceBit 0 dInXor $ replaceBit 5 (bv!4 `xor` dInXor) $ replaceBit 12 (bv!11 `xor` dInXor) rotated where dInXor = dIn `xor` fb rotated = rotateL bv 1 fb = msb bv :} >>> :{ let crc :: Signal Bool -> Signal Bool -> Signal Bit -> Signal (BitVector 16) crc enable ld dIn = s where s = register 0xFFFF (mux enable (mux ld 0xFFFF (crcT <$> s <*> dIn)) s) :} >>> :{ let uartTX t@(TxReg {..}) ld_tx_data tx_data tx_enable = flip execState t $ do when ld_tx_data $ do if not _tx_empty then tx_over_run .= False else do tx_reg .= tx_data tx_empty .= False when (tx_enable && not _tx_empty) $ do tx_cnt += 1 when (_tx_cnt == 0) $ tx_out .= 0 when (_tx_cnt > 0 && _tx_cnt < 9) $ tx_out .= _tx_reg ! (_tx_cnt - 1) when (_tx_cnt == 9) $ do tx_out .= 1 tx_cnt .= 0 tx_empty .= True unless tx_enable $ tx_cnt .= 0 :} >>> :{ let uartRX r@(RxReg {..}) rx_in uld_rx_data rx_enable = flip execState r $ do -- Synchronise the async signal rx_d1 .= rx_in rx_d2 .= _rx_d1 -- Uload the rx data when uld_rx_data $ do rx_data .= _rx_reg rx_empty .= True -- Receive data only when rx is enabled if rx_enable then do -- Check if just received start of frame when (not _rx_busy && _rx_d2 == 0) $ do rx_busy .= True rx_sample_cnt .= 1 rx_cnt .= 0 -- Star of frame detected, Proceed with rest of data when _rx_busy $ do rx_sample_cnt += 1 -- Logic to sample at middle of data when (_rx_sample_cnt == 7) $ do if _rx_d1 == 1 && _rx_cnt == 0 then rx_busy .= False else do rx_cnt += 1 -- start storing the rx data when (_rx_cnt > 0 && _rx_cnt < 9) $ do rx_reg %= replaceBit (_rx_cnt - 1) _rx_d2 when (_rx_cnt == 9) $ do rx_busy .= False -- Check if End of frame received correctly if _rx_d2 == 0 then rx_frame_err .= True else do rx_empty .= False rx_frame_err .= False -- Check if last rx data was not unloaded rx_over_run .= not _rx_empty else do rx_busy .= False :} >>> :{ let uart ld_tx_data tx_data tx_enable rx_in uld_rx_data rx_enable = ( _tx_out <$> txReg , _tx_empty <$> txReg , _rx_data <$> rxReg , _rx_empty <$> rxReg ) where rxReg = register rxRegInit (uartRX <$> rxReg <*> rx_in <*> uld_rx_data <*> rx_enable) rxRegInit = RxReg { _rx_reg = 0 , _rx_data = 0 , _rx_sample_cnt = 0 , _rx_cnt = 0 , _rx_frame_err = False , _rx_over_run = False , _rx_empty = True , _rx_d1 = 1 , _rx_d2 = 1 , _rx_busy = False } txReg = register txRegInit (uartTX <$> txReg <*> ld_tx_data <*> tx_data <*> tx_enable) txRegInit = TxReg { _tx_reg = 0 , _tx_empty = True , _tx_over_run = False , _tx_out = 1 , _tx_cnt = 0 } :} -} data RxReg = RxReg { _rx_reg :: BitVector 8 , _rx_data :: BitVector 8 , _rx_sample_cnt :: Unsigned 4 , _rx_cnt :: Unsigned 4 , _rx_frame_err :: Bool , _rx_over_run :: Bool , _rx_empty :: Bool , _rx_d1 :: Bit , _rx_d2 :: Bit , _rx_busy :: Bool } makeLenses ''RxReg data TxReg = TxReg { _tx_reg :: BitVector 8 , _tx_empty :: Bool , _tx_over_run :: Bool , _tx_out :: Bit , _tx_cnt :: Unsigned 4 } makeLenses ''TxReg {- $decoders_and_encoders = Decoder Using a @case@ statement: @ decoderCase :: Bool -> BitVector 4 -> BitVector 16 decoderCase enable binaryIn | enable = case binaryIn of 0x0 -> 0x0001 0x1 -> 0x0002 0x2 -> 0x0004 0x3 -> 0x0008 0x4 -> 0x0010 0x5 -> 0x0020 0x6 -> 0x0040 0x7 -> 0x0080 0x8 -> 0x0100 0x9 -> 0x0200 0xA -> 0x0400 0xB -> 0x0800 0xC -> 0x1000 0xD -> 0x2000 0xE -> 0x4000 0xF -> 0x8000 decoderCase _ _ = 0 @ Using the `shiftL` function: @ decoderShift :: Bool -> BitVector 4 -> BitVector 16 decoderShift enable binaryIn = if enable then 1 ``shiftL`` ('fromIntegral' binaryIn) else 0 @ Examples: >>> decoderCase True 3 0000_0000_0000_1000 >>> decoderShift True 7 0000_0000_1000_0000 The following property holds: prop> \enable binaryIn -> decoderShift enable binaryIn === decoderCase enable binaryIn = Encoder Using a @case@ statement: @ encoderCase :: Bool -> BitVector 16 -> BitVector 4 encoderCase enable binaryIn | enable = case binaryIn of 0x0001 -> 0x0 0x0002 -> 0x1 0x0004 -> 0x2 0x0008 -> 0x3 0x0010 -> 0x4 0x0020 -> 0x5 0x0040 -> 0x6 0x0080 -> 0x7 0x0100 -> 0x8 0x0200 -> 0x9 0x0400 -> 0xA 0x0800 -> 0xB 0x1000 -> 0xC 0x2000 -> 0xD 0x4000 -> 0xE 0x8000 -> 0xF encoderCase _ _ = 0 @ The following property holds: prop> \en decIn -> en ==> (encoderCase en (decoderCase en decIn) === decIn) -} {- $counters = 8-bit Simple Up Counter Using `register`: @ upCounter :: Signal Bool -> Signal (Unsigned 8) upCounter enable = s where s = `register` 0 (`mux` enable (s + 1) s) @ = 8-bit Up Counter With Load Using `mealy`: @ upCounterLd :: Signal (Bool,Bool,Unsigned 8) -> Unsigned 8 upCounterLd = `mealy` upCounterLdT 0 upCounterLdT s (ld,en,dIn) = (s',s) where s' | ld = dIn | en = s + 1 | otherwise = s @ = 8-bit Up-Down counter Using `register` and `mux`: @ upDownCounter :: Signal Bool -> Signal (Unsigned 8) upDownCounter upDown = s where s = `register` 0 (`mux` upDown (s + 1) (s - 1)) @ The following property holds: prop> \en -> en ==> testFor 1000 (upCounter (signal en) .==. upDownCounter (signal en)) = LFSR External/Fibonacci LFSR, for @n=16@ and using the primitive polynominal @1 + x^11 + x^13 + x^14 + x^16@ @ lfsrF' :: BitVector 16 -> BitVector 16 lfsrF' s = feedback '++#' 'slice' d15 d1 s where feedback = s'!'5 ``xor`` s'!'3 ``xor`` s'!'2 ``xor`` s'!'0 lfsrF :: BitVector 16 -> Signal Bit lfsrF seed = 'msb' '<$>' r where r = 'register' seed (lfsrF' '<$>' r) @ We can also build a internal/Galois LFSR which has better timing characteristics. We first define a Galois LFSR parametrizable in its filter taps: @ lfsrGP taps regs = 'zipWith' xorM taps (fb '+>>' regs) where fb = 'last' regs xorM i x | i = x ``xor`` fb | otherwise = x @ Then we can instantiate a 16-bit LFSR as follows: @ lfsrG :: BitVector 16 -> Signal Bit lfsrG seed = 'last' ('unbundle' r) where r = 'register' ('unpack' seed) (lfsrGP ('unpack' 0b0011010000000000) '<$>' r) @ The following property holds: prop> testFor 100 (lfsrF 0xACE1 .==. lfsrG 0x4645) = Gray counter Using the previously defined @upCounter@: @ grayCounter :: Signal Bool -> Signal (BitVector 8) grayCounter en = gray '<$>' upCounter en where gray xs = 'msb' xs '++#' 'xor' ('slice' d7 d1 xs) ('slice' d6 d0 xs) @ = One-hot counter Basically a barrel-shifter: @ oneHotCounter :: Signal Bool -> Signal (BitVector 8) oneHotCounter enable = s where s = 'register' 1 ('mux' enable ('rotateL' '<$>' s '<*>' 1) s) @ -} {- $parity_and_crc = Parity Just 'reduceXor': @ parity :: Unsigned 8 -> Bit parity data_in = `reduceXor` data_in @ = Serial CRC * Width = 16 bits * Truncated polynomial = 0x1021 * Initial value = 0xFFFF * Input data is NOT reflected * Output CRC is NOT reflected * No XOR is performed on the output CRC @ crcT bv dIn = 'replaceBit' 0 dInXor $ 'replaceBit' 5 (bv'!'4 ``xor`` dInXor) $ 'replaceBit' 12 (bv'!'11 ``xor`` dInXor) rotated where dInXor = dIn ``xor`` fb rotated = 'rotateL' bv 1 fb = 'msb' bv crc :: Signal Bool -> Signal Bool -> Signal Bit -> Signal (BitVector 16) crc enable ld dIn = s where s = 'register' 0xFFFF ('mux' enable ('mux' ld 0xFFFF (crcT '<$>' s '<*>' dIn)) s) @ -} {- $uart @ {\-\# LANGUAGE RecordWildCards \#-\} module UART (uart) where import CLaSH.Prelude import Control.Lens import Control.Monad import Control.Monad.Trans.State -- UART RX Logic data RxReg = RxReg { _rx_reg :: BitVector 8 , _rx_data :: BitVector 8 , _rx_sample_cnt :: Unsigned 4 , _rx_cnt :: Unsigned 4 , _rx_frame_err :: Bool , _rx_over_run :: Bool , _rx_empty :: Bool , _rx_d1 :: Bit , _rx_d2 :: Bit , _rx_busy :: Bool } makeLenses ''RxReg uartRX r\@(RxReg {..}) rx_in uld_rx_data rx_enable = 'flip' 'execState' r $ do -- Synchronise the async signal rx_d1 '.=' rx_in rx_d2 '.=' _rx_d1 -- Uload the rx data 'when' uld_rx_data $ do rx_data '.=' _rx_reg rx_empty '.=' True -- Receive data only when rx is enabled if rx_enable then do -- Check if just received start of frame 'when' (not _rx_busy && _rx_d2 == 0) $ do rx_busy '.=' True rx_sample_cnt '.=' 1 rx_cnt '.=' 0 -- Star of frame detected, Proceed with rest of data 'when' _rx_busy $ do rx_sample_cnt '+=' 1 -- Logic to sample at middle of data 'when' (_rx_sample_cnt == 7) $ do if _rx_d1 == 1 && _rx_cnt == 0 then rx_busy '.=' False else do rx_cnt '+=' 1 -- start storing the rx data 'when' (_rx_cnt > 0 && _rx_cnt < 9) $ do rx_reg '%=' 'replaceBit' (_rx_cnt - 1) _rx_d2 'when' (_rx_cnt == 9) $ do rx_busy .= False -- Check if End of frame received correctly if _rx_d2 == 0 then rx_frame_err '.=' True else do rx_empty '.=' False rx_frame_err '.=' False -- Check if last rx data was not unloaded rx_over_run '.=' not _rx_empty else do rx_busy .= False -- UART TX Logic data TxReg = TxReg { _tx_reg :: BitVector 8 , _tx_empty :: Bool , _tx_over_run :: Bool , _tx_out :: Bit , _tx_cnt :: Unsigned 4 } makeLenses ''TxReg uartTX t\@(TxReg {..}) ld_tx_data tx_data tx_enable = 'flip' 'execState' t $ do 'when' ld_tx_data $ do if not _tx_empty then tx_over_run '.=' False else do tx_reg '.=' tx_data tx_empty '.=' False 'when' (tx_enable && not _tx_empty) $ do tx_cnt '+=' 1 'when' (_tx_cnt == 0) $ tx_out '.=' 0 'when' (_tx_cnt > 0 && _tx_cnt < 9) $ tx_out '.=' _tx_reg '!' (_tx_cnt - 1) 'when' (_tx_cnt == 9) $ do tx_out '.=' 1 tx_cnt '.=' 0 tx_empty '.=' True 'unless' tx_enable $ tx_cnt '.=' 0 -- Combine RX and TX logic uart ld_tx_data tx_data tx_enable rx_in uld_rx_data rx_enable = ( _tx_out '<$>' txReg , _tx_empty '<$>' txReg , _rx_data '<$>' rxReg , _rx_empty '<$>' rxReg ) where rxReg = register rxRegInit (uartRX '<$>' rxReg '<*>' rx_in '<*>' uld_rx_data '<*>' rx_enable) rxRegInit = RxReg { _rx_reg = 0 , _rx_data = 0 , _rx_sample_cnt = 0 , _rx_cnt = 0 , _rx_frame_err = False , _rx_over_run = False , _rx_empty = True , _rx_d1 = 1 , _rx_d2 = 1 , _rx_busy = False } txReg = register txRegInit (uartTX '<$>' txReg '<*>' ld_tx_data '<*>' tx_data '<*>' tx_enable) txRegInit = TxReg { _tx_reg = 0 , _tx_empty = True , _tx_over_run = False , _tx_out = 1 , _tx_cnt = 0 } @ -}