{-| Copyright : (C) 2013-2016, University of Twente License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij Whereas the output of a Moore machine depends on the /previous state/, the outputof a Mealy machine depends on /current transition/. Mealy machines are strictly more expressive, but may impose stricter timing requirements. -} {-# LANGUAGE Safe #-} module CLaSH.Prelude.Mealy ( -- * Mealy machine synchronised to the system clock mealy , mealyB , (<^>) -- * Mealy machine synchronised to an arbitrary clock , mealy' , mealyB' ) where import CLaSH.Signal (Signal, Unbundled) import CLaSH.Signal.Explicit (Signal', SClock, register', systemClock) import CLaSH.Signal.Bundle (Bundle (..), Unbundled') {- $setup >>> :set -XDataKinds >>> import CLaSH.Prelude >>> :{ let mac s (x,y) = (s',s) where s' = x * y + s topEntity = mealy mac 0 :} >>> import CLaSH.Prelude.Explicit >>> type ClkA = Clk "A" 100 >>> let clkA = sclock :: SClock ClkA >>> :{ let mac s (x,y) = (s',s) where s' = x * y + s :} >>> let topEntity = mealy' clkA mac 0 -} {-# INLINE mealy #-} -- | Create a synchronous function from a combinational function describing -- a mealy machine -- -- @ -- mac :: Int -- Current state -- -> (Int,Int) -- Input -- -> (Int,Int) -- (Updated state, output) -- mac s (x,y) = (s',s) -- where -- s' = x * y + s -- -- topEntity :: 'Signal' (Int, Int) -> 'Signal' Int -- topEntity = 'mealy' mac 0 -- @ -- -- >>> simulate topEntity [(1,1),(2,2),(3,3),(4,4)] -- [0,1,5,14... -- ... -- -- Synchronous sequential functions can be composed just like their -- combinational counterpart: -- -- @ -- dualMac :: ('Signal' Int, 'Signal' Int) -- -> ('Signal' Int, 'Signal' Int) -- -> 'Signal' Int -- dualMac (a,b) (x,y) = s1 + s2 -- where -- s1 = 'mealy' mac 0 ('CLaSH.Signal.bundle' (a,x)) -- s2 = 'mealy' mac 0 ('CLaSH.Signal.bundle' (b,y)) -- @ mealy :: (s -> i -> (s,o)) -- ^ Transfer function in mealy machine form: -- @state -> input -> (newstate,output)@ -> s -- ^ Initial state -> (Signal i -> Signal o) -- ^ Synchronous sequential function with input and output matching that -- of the mealy machine mealy = mealy' systemClock {-# INLINE mealyB #-} -- | A version of 'mealy' that does automatic 'Bundle'ing -- -- Given a function @f@ of type: -- -- @ -- __f__ :: Int -> (Bool, Int) -> (Int, (Int, Bool)) -- @ -- -- When we want to make compositions of @f@ in @g@ using 'mealy', we have to -- write: -- -- @ -- g a b c = (b1,b2,i2) -- where -- (i1,b1) = 'CLaSH.Signal.unbundle' ('mealy' f 0 ('CLaSH.Signal.bundle' (a,b))) -- (i2,b2) = 'CLaSH.Signal.unbundle' ('mealy' f 3 ('CLaSH.Signal.bundle' (i1,c))) -- @ -- -- Using 'mealyB' however we can write: -- -- @ -- g a b c = (b1,b2,i2) -- where -- (i1,b1) = 'mealyB' f 0 (a,b) -- (i2,b2) = 'mealyB' f 3 (i1,c) -- @ mealyB :: (Bundle i, Bundle o) => (s -> i -> (s,o)) -- ^ Transfer function in mealy machine form: -- @state -> input -> (newstate,output)@ -> s -- ^ Initial state -> (Unbundled i -> Unbundled o) -- ^ Synchronous sequential function with input and output matching that -- of the mealy machine mealyB = mealyB' systemClock {-# INLINE (<^>) #-} -- | Infix version of 'mealyB' (<^>) :: (Bundle i, Bundle o) => (s -> i -> (s,o)) -- ^ Transfer function in mealy machine form: -- @state -> input -> (newstate,output)@ -> s -- ^ Initial state -> (Unbundled i -> Unbundled o) -- ^ Synchronous sequential function with input and output matching that -- of the mealy machine (<^>) = mealyB {-# INLINABLE mealy' #-} -- | Create a synchronous function from a combinational function describing -- a mealy machine -- -- @ -- mac :: Int -- Current state -- -> (Int,Int) -- Input -- -> (Int,Int) -- (Updated state, output) -- mac s (x,y) = (s',s) -- where -- s' = x * y + s -- -- type ClkA = 'CLaSH.Signal.Explicit.Clk' \"A\" 100 -- -- clkA :: 'SClock' ClkA -- clkA = 'CLaSH.Signal.Explicit.sclock' -- -- topEntity :: 'Signal'' ClkA (Int, Int) -> 'Signal'' ClkA Int -- topEntity = 'mealy'' clkA mac 0 -- @ -- -- >>> simulate topEntity [(1,1),(2,2),(3,3),(4,4)] -- [0,1,5,14... -- ... -- -- Synchronous sequential functions can be composed just like their -- combinational counterpart: -- -- @ -- dualMac :: ('Signal'' clkA100 Int, 'Signal'' clkA100 Int) -- -> ('Signal'' clkA100 Int, 'Signal'' clkA100 Int) -- -> 'Signal'' clkA100 Int -- dualMac (a,b) (x,y) = s1 + s2 -- where -- s1 = 'mealy'' clkA100 mac 0 ('CLaSH.Signal.Explicit.bundle'' clkA100 (a,x)) -- s2 = 'mealy'' clkA100 mac 0 ('CLaSH.Signal.Explicit.bundle'' clkA100 (b,y)) -- @ mealy' :: SClock clk -- ^ 'Clock' to synchronize to -> (s -> i -> (s,o)) -- ^ Transfer function in mealy machine form: -- @state -> input -> (newstate,output)@ -> s -- ^ Initial state -> (Signal' clk i -> Signal' clk o) -- ^ Synchronous sequential function with input and output matching that -- of the mealy machine mealy' clk f iS = \i -> let (s',o) = unbundle $ f <$> s <*> i s = register' clk iS s' in o {-# INLINE mealyB' #-} -- | A version of 'mealy'' that does automatic 'Bundle'ing -- -- Given a function @f@ of type: -- -- @ -- __f__ :: Int -> (Bool,Int) -> (Int,(Int,Bool)) -- @ -- -- When we want to make compositions of @f@ in @g@ using 'mealy'', we have to -- write: -- -- @ -- g clk a b c = (b1,b2,i2) -- where -- (i1,b1) = 'CLaSH.Signal.Explicit.unbundle'' clk (mealy' clk f 0 ('CLaSH.Signal.Explicit.bundle'' clk (a,b))) -- (i2,b2) = 'CLaSH.Signal.Explicit.unbundle'' clk (mealy' clk f 3 ('CLaSH.Signal.Explicit.bundle'' clk (i1,c))) -- @ -- -- Using 'mealyB'' however we can write: -- -- @ -- g clk a b c = (b1,b2,i2) -- where -- (i1,b1) = 'mealyB'' clk f 0 (a,b) -- (i2,b2) = 'mealyB'' clk f 3 (i1,c) -- @ mealyB' :: (Bundle i, Bundle o) => SClock clk -> (s -> i -> (s,o)) -- ^ Transfer function in mealy machine form: -- @state -> input -> (newstate,output)@ -> s -- ^ Initial state -> (Unbundled' clk i -> Unbundled' clk o) -- ^ Synchronous sequential function with input and output matching that -- of the mealy machine mealyB' clk f iS i = unbundle (mealy' clk f iS (bundle i))