{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} module CLaSH.Sized.Internal.Signed ( -- * Datatypes Signed (..) -- * Accessors -- ** Length information , size# -- * Type classes -- ** BitConvert , pack# , unpack# -- Eq , eq# , neq# -- ** Ord , lt# , ge# , gt# , le# -- ** Enum (not synthesisable) , enumFrom# , enumFromThen# , enumFromTo# , enumFromThenTo# -- ** Bounded , minBound# , maxBound# -- ** Num , (+#) , (-#) , (*#) , negate# , abs# , fromInteger# -- ** ExtendingNum , plus# , minus# , times# -- ** Integral , quot# , rem# , div# , mod# , toInteger# -- ** Bits , and# , or# , xor# , complement# , shiftL# , shiftR# , rotateL# , rotateR# , popCount# -- ** Resize , resize# , truncateB# -- ** SaturatingNum , minBoundSym# ) where import Data.Bits (Bits (..), FiniteBits (..)) import Data.Default (Default (..)) import Data.Typeable (Typeable) import GHC.TypeLits (KnownNat, Nat, type (+), natVal) import Language.Haskell.TH (TypeQ, appT, conT, litT, numTyLit, sigE) import Language.Haskell.TH.Syntax (Lift(..)) import CLaSH.Class.BitPack (BitPack (..)) import CLaSH.Class.Num (ExtendingNum (..), SaturatingNum (..), SaturationMode (..)) import CLaSH.Class.Resize (Resize (..)) import CLaSH.Prelude.BitIndex ((!), msb, replaceBit, split) import CLaSH.Prelude.BitReduction (reduceAnd, reduceOr) import CLaSH.Promoted.Ord (Max) import CLaSH.Sized.Internal.BitVector (BitVector (..), (++#), high, low) import qualified CLaSH.Sized.Internal.BitVector as BV -- | Arbitrary-width signed integer represented by @n@ bits, including the sign -- bit. -- -- Uses standard 2-complements representation. Meaning that, given @n@ bits, -- a 'Signed' @n@ number has a range of: [-(2^(@n@-1)) .. 2^(@n@-1)-1] -- -- __NB__: The 'Num' operators perform @wrap-around@ on overflow. If you want -- saturation on overflow, check out the 'SaturatingNum' class. newtype Signed (n :: Nat) = -- | The constructor, 'S', and the field, 'unsafeToInteger', are not -- synthesisable. S { unsafeToInteger :: Integer} deriving Typeable {-# NOINLINE size# #-} size# :: KnownNat n => Signed n -> Int size# bv = fromInteger (natVal bv) instance Show (Signed n) where show (S n) = show n instance KnownNat n => BitPack (Signed n) where type BitSize (Signed n) = n pack = pack# unpack = unpack# {-# NOINLINE pack# #-} pack# :: KnownNat n => Signed n -> BitVector n pack# s@(S i) = BV (i `mod` maxI) where maxI = 2 ^ natVal s {-# NOINLINE unpack# #-} unpack# :: KnownNat n => BitVector n -> Signed n unpack# (BV i) = fromInteger_INLINE i instance Eq (Signed n) where (==) = eq# (/=) = neq# {-# NOINLINE eq# #-} eq# :: Signed n -> Signed n -> Bool eq# (S v1) (S v2) = v1 == v2 {-# NOINLINE neq# #-} neq# :: Signed n -> Signed n -> Bool neq# (S v1) (S v2) = v1 /= v2 instance Ord (Signed n) where (<) = lt# (>=) = ge# (>) = gt# (<=) = le# lt#,ge#,gt#,le# :: Signed n -> Signed n -> Bool {-# NOINLINE lt# #-} lt# (S n) (S m) = n < m {-# NOINLINE ge# #-} ge# (S n) (S m) = n >= m {-# NOINLINE gt# #-} gt# (S n) (S m) = n > m {-# NOINLINE le# #-} le# (S n) (S m) = n <= m -- | The functions: 'enumFrom', 'enumFromThen', 'enumFromTo', and -- 'enumFromThenTo', are not synthesisable. instance KnownNat n => Enum (Signed n) where succ = (+# fromInteger# 1) pred = (-# fromInteger# 1) toEnum = fromInteger# . toInteger fromEnum = fromEnum . toInteger# enumFrom = enumFrom# enumFromThen = enumFromThen# enumFromTo = enumFromTo# enumFromThenTo = enumFromThenTo# {-# NOINLINE enumFrom# #-} {-# NOINLINE enumFromThen# #-} {-# NOINLINE enumFromTo# #-} {-# NOINLINE enumFromThenTo# #-} enumFrom# :: KnownNat n => Signed n -> [Signed n] enumFromThen# :: KnownNat n => Signed n -> Signed n -> [Signed n] enumFromTo# :: KnownNat n => Signed n -> Signed n -> [Signed n] enumFromThenTo# :: KnownNat n => Signed n -> Signed n -> Signed n -> [Signed n] enumFrom# x = map toEnum [fromEnum x ..] enumFromThen# x y = map toEnum [fromEnum x, fromEnum y ..] enumFromTo# x y = map toEnum [fromEnum x .. fromEnum y] enumFromThenTo# x1 x2 y = map toEnum [fromEnum x1, fromEnum x2 .. fromEnum y] instance KnownNat n => Bounded (Signed n) where minBound = minBound# maxBound = maxBound# minBound#,maxBound# :: KnownNat n => Signed n {-# NOINLINE minBound# #-} minBound# = let res = S $ negate $ 2 ^ (natVal res - 1) in res {-# NOINLINE maxBound# #-} maxBound# = let res = S $ 2 ^ (natVal res - 1) - 1 in res -- | Operators do @wrap-around@ on overflow instance KnownNat n => Num (Signed n) where (+) = (+#) (-) = (-#) (*) = (*#) negate = negate# abs = abs# signum s = if s < 0 then (-1) else if s > 0 then 1 else 0 fromInteger = fromInteger# (+#), (-#), (*#) :: KnownNat n => Signed n -> Signed n -> Signed n {-# NOINLINE (+#) #-} (S a) +# (S b) = fromInteger_INLINE (a + b) {-# NOINLINE (-#) #-} (S a) -# (S b) = fromInteger_INLINE (a - b) {-# NOINLINE (*#) #-} (S a) *# (S b) = fromInteger_INLINE (a * b) negate#,abs# :: KnownNat n => Signed n -> Signed n {-# NOINLINE negate# #-} negate# (S n) = fromInteger_INLINE (negate n) {-# NOINLINE abs# #-} abs# (S n) = fromInteger_INLINE (abs n) {-# NOINLINE fromInteger# #-} fromInteger# :: KnownNat n => Integer -> Signed (n :: Nat) fromInteger# = fromInteger_INLINE {-# INLINE fromInteger_INLINE #-} fromInteger_INLINE :: KnownNat n => Integer -> Signed n fromInteger_INLINE i | n == 0 = S 0 | otherwise = res where n = natVal res sz = 2 ^ (n - 1) res = case divMod i sz of (s,i') | even s -> S i' | otherwise -> S (i' - sz) instance (KnownNat (1 + Max m n), KnownNat (m + n)) => ExtendingNum (Signed m) (Signed n) where type AResult (Signed m) (Signed n) = Signed (1 + Max m n) plus = plus# minus = minus# type MResult (Signed m) (Signed n) = Signed (m + n) times = times# plus#, minus# :: KnownNat (1 + Max m n) => Signed m -> Signed n -> Signed (1 + Max m n) {-# NOINLINE plus# #-} plus# (S a) (S b) = fromInteger_INLINE (a + b) {-# NOINLINE minus# #-} minus# (S a) (S b) = fromInteger_INLINE (a - b) {-# NOINLINE times# #-} times# :: KnownNat (m + n) => Signed m -> Signed n -> Signed (m + n) times# (S a) (S b) = fromInteger_INLINE (a * b) instance KnownNat n => Real (Signed n) where toRational = toRational . toInteger# instance KnownNat n => Integral (Signed n) where quot = quot# rem = rem# div = div# mod = mod# quotRem n d = (n `quot#` d,n `rem#` d) divMod n d = (n `div#` d,n `mod#` d) toInteger = toInteger# quot#,rem#,div#,mod# :: KnownNat n => Signed n -> Signed n -> Signed n {-# NOINLINE quot# #-} quot# (S a) (S b) = S (a `quot` b) {-# NOINLINE rem# #-} rem# (S a) (S b) = S (a `rem` b) {-# NOINLINE div# #-} div# (S a) (S b) = S (a `div` b) {-# NOINLINE mod# #-} mod# (S a) (S b) = S (a `mod` b) {-# NOINLINE toInteger# #-} toInteger# :: Signed n -> Integer toInteger# (S n) = n instance KnownNat n => Bits (Signed n) where (.&.) = and# (.|.) = or# xor = xor# complement = complement# zeroBits = 0 bit i = replaceBit 0 i high setBit v i = replaceBit v i high clearBit v i = replaceBit v i low complementBit v i = replaceBit v i (BV.complement# (v ! i)) testBit v i = v ! i == 1 bitSizeMaybe v = Just (size# v) bitSize = size# isSigned _ = True shiftL v i = shiftL# v i shiftR v i = shiftR# v i rotateL v i = rotateL# v i rotateR v i = rotateR# v i popCount = popCount# and#,or#,xor# :: KnownNat n => Signed n -> Signed n -> Signed n {-# NOINLINE and# #-} and# (S a) (S b) = fromInteger_INLINE (a .&. b) {-# NOINLINE or# #-} or# (S a) (S b) = fromInteger_INLINE (a .|. b) {-# NOINLINE xor# #-} xor# (S a) (S b) = fromInteger_INLINE (xor a b) {-# NOINLINE complement# #-} complement# :: KnownNat n => Signed n -> Signed n complement# = unpack# . complement . pack# shiftL#,shiftR#,rotateL#,rotateR# :: KnownNat n => Signed n -> Int -> Signed n {-# NOINLINE shiftL# #-} shiftL# _ b | b < 0 = error "'shiftL undefined for negative numbers" shiftL# (S n) b = fromInteger_INLINE (shiftL n b) {-# NOINLINE shiftR# #-} shiftR# _ b | b < 0 = error "'shiftR undefined for negative numbers" shiftR# (S n) b = fromInteger_INLINE (shiftR n b) {-# NOINLINE rotateL# #-} rotateL# _ b | b < 0 = error "'shiftL undefined for negative numbers" rotateL# s@(S n) b = fromInteger_INLINE (l .|. r) where l = shiftL n b' r = shiftR n b'' .&. mask mask = 2 ^ b' - 1 b' = b `mod` sz b'' = sz - b' sz = fromInteger (natVal s) {-# NOINLINE rotateR# #-} rotateR# _ b | b < 0 = error "'shiftR undefined for negative numbers" rotateR# s@(S n) b = fromInteger_INLINE (l .|. r) where l = shiftR n b' .&. mask r = shiftL n b'' mask = 2 ^ b'' - 1 b' = b `mod` sz b'' = sz - b' sz = fromInteger (natVal s) {-# NOINLINE popCount# #-} popCount# :: KnownNat n => Signed n -> Int popCount# s@(S i) = popCount i' where maxI = 2 ^ natVal s i' = i `mod` maxI instance KnownNat n => FiniteBits (Signed n) where finiteBitSize = size# instance Resize Signed where resize = resize# extend = resize# zeroExtend s = unpack# (0 ++# pack s) signExtend = resize# truncateB = truncateB# {-# NOINLINE resize# #-} resize# :: (KnownNat n, KnownNat m) => Signed n -> Signed m resize# s@(S i) | n <= m = extended | otherwise = truncated where n = fromInteger (natVal s) m = fromInteger (natVal extended) extended = fromInteger_INLINE i mask = (2 ^ (m - 1)) - 1 sign = 2 ^ (m - 1) i' = i .&. mask truncated = if testBit i (n - 1) then fromInteger_INLINE (i' .|. sign) else fromInteger_INLINE i' {-# NOINLINE truncateB# #-} truncateB# :: KnownNat m => Signed (n + m) -> Signed m truncateB# (S n) = fromInteger_INLINE n instance KnownNat n => Default (Signed n) where def = fromInteger# 0 instance KnownNat n => Lift (Signed n) where lift s@(S i) = sigE [| fromInteger# i |] (decSigned (natVal s)) decSigned :: Integer -> TypeQ decSigned n = appT (conT ''Signed) (litT $ numTyLit n) instance (KnownNat n, KnownNat (1 + n), KnownNat (n + n)) => SaturatingNum (Signed n) where satPlus SatWrap a b = a +# b satPlus w a b = case msb r `xor` msb r' of 0 -> unpack# r' _ -> case msb a .&. msb b of 1 -> case w of SatBound -> minBound# SatSymmetric -> minBoundSym# _ -> fromInteger# 0 _ -> case w of SatZero -> fromInteger# 0 _ -> maxBound# where r = plus# a b (_,r') = split r satMin SatWrap a b = a -# b satMin w a b = case msb r `xor` msb r' of 0 -> unpack# r' _ -> case msb a ++# msb b of 2 -> case w of SatBound -> minBound# SatSymmetric -> minBoundSym# _ -> fromInteger# 0 _ -> case w of SatZero -> fromInteger# 0 _ -> maxBound# where r = minus# a b (_,r') = split r satMult SatWrap a b = a *# b satMult w a b = case overflow of 1 -> unpack# rR _ -> case msb rL of 0 -> case w of SatZero -> fromInteger# 0 _ -> maxBound# _ -> case w of SatBound -> minBound# SatSymmetric -> minBoundSym# _ -> fromInteger# 0 where overflow = complement (reduceOr (msb rR ++# pack rL)) .|. reduceAnd (msb rR ++# pack rL) r = times# a b (rL,rR) = split r minBoundSym# :: KnownNat n => Signed n minBoundSym# = minBound# +# fromInteger# 1