{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE Trustworthy #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} {-# OPTIONS_GHC -fno-warn-incomplete-patterns #-} {-# OPTIONS_HADDOCK show-extensions #-} {-| Copyright : (C) 2013-2015, University of Twente License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij <christiaan.baaij@gmail.com> -} module CLaSH.Sized.Vector ( -- * 'Vec'tor constructors Vec(..), (<:), singleton -- * Standard 'Vec'tor functions -- ** Extracting sub-'Vec'tors , head, tail, last, init , take, takeI, drop, dropI, at, select, selectI -- ** Combining 'Vec'tors , (++), (+>>), (<<+), concat, zip, unzip, zip3, unzip3, shiftInAt0, shiftInAtN , shiftOutFrom0, shiftOutFromN -- ** Splitting 'Vec'tors , splitAt, splitAtI, unconcat, unconcatI, merge -- ** Applying functions to 'Vec'tor elements , map, zipWith, zipWith3 , foldr, foldl, foldr1, foldl1, fold , scanl, scanr, sscanl, sscanr , mapAccumL, mapAccumR -- ** Special folds , dfold, vfold -- ** Indexing 'Vec'tors , (!!), replace, maxIndex, length -- ** Generating 'Vec'tors , replicate, repeat, iterate, iterateI, generate, generateI -- ** Misc , reverse, toList, v, lazyV, asNatProxy -- ** Functions for the 'BitPack' instance , concatBitVector# , unconcatBitVector# ) where import Control.Lens (Index, Ixed (..), IxValue) import Data.Default (Default (..)) import qualified Data.Foldable as F import Data.Proxy (Proxy (..)) import Data.Singletons.Prelude (TyFun,Apply,type ($)) import GHC.TypeLits (CmpNat, KnownNat, Nat, type (+), type (*), natVal) import GHC.Base (Int(I#),Int#,isTrue#) import GHC.Prim ((==#),(<#),(-#)) import Language.Haskell.TH (ExpQ) import Language.Haskell.TH.Syntax (Lift(..)) import Prelude hiding ((++), (!!), concat, drop, foldl, foldl1, foldr, foldr1, head, init, iterate, last, length, map, repeat, replicate, reverse, scanl, scanr, splitAt, tail, take, unzip, unzip3, zip, zip3, zipWith, zipWith3) import qualified Prelude as P import Test.QuickCheck (Arbitrary (..), CoArbitrary (..)) import Unsafe.Coerce (unsafeCoerce) import CLaSH.Promoted.Nat (SNat (..), UNat (..), withSNat, toUNat) import CLaSH.Sized.Internal.BitVector (BitVector, (++#), split#) import CLaSH.Class.BitPack (BitPack (..)) -- $setup -- >>> :set -XDataKinds -- >>> :set -XTypeFamilies -- >>> :set -XTypeOperators -- >>> :set -XTemplateHaskell -- >>> :set -XFlexibleContexts -- >>> :set -fplugin GHC.TypeLits.Normalise -- >>> import CLaSH.Prelude -- >>> let compareSwapL a b = if a < b then (a,b) else (b,a) -- >>> :{ -- let sortV xs = map fst sorted <: (snd (last sorted)) -- where -- lefts = head xs :> map snd (init sorted) -- rights = tail xs -- sorted = zipWith compareSwapL lefts rights -- :} -- -- >>> :{ -- let sortVL xs = map fst sorted <: (snd (last sorted)) -- where -- lefts = head xs :> map snd (init sorted) -- rights = tail xs -- sorted = zipWith compareSwapL (lazyV lefts) rights -- :} -- -- >>> :{ -- let sortV_flip xs = map fst sorted <: (snd (last sorted)) -- where -- lefts = head xs :> map snd (init sorted) -- rights = tail xs -- sorted = zipWith (flip compareSwapL) rights lefts -- :} -- -- >>> import Data.Singletons.Prelude -- >>> data Append (m :: Nat) (a :: *) (f :: TyFun Nat *) :: * -- >>> type instance Apply (Append m a) l = Vec (l + m) a -- >>> let append' xs ys = dfold (Proxy :: Proxy (Append m a)) (const (:>)) ys xs -- >>> let cs a b = if a > b then (a,b) else (b,a) -- >>> let csRow y xs = let (y',xs') = mapAccumL cs y xs in xs' <: y' -- >>> let csSort = vfold csRow -- | Fixed size vectors -- -- * Lists with their length encoded in their type -- * 'Vec'tor elements have an __ASCENDING__ subscript starting from 0 and -- ending at 'maxIndex' (== 'length' - 1). -- -- >>> 3:>4:>5:>Nil -- <3,4,5> -- >>> let x = 3:>4:>5:>Nil -- >>> :t x -- x :: Num a => Vec 3 a data Vec :: Nat -> * -> * where Nil :: Vec 0 a (:>) :: a -> Vec n a -> Vec (n + 1) a infixr 5 :> instance Show a => Show (Vec n a) where show vs = "<" P.++ punc vs P.++ ">" where punc :: Vec m a -> String punc Nil = "" punc (x :> Nil) = show x punc (x :> xs) = show x P.++ "," P.++ punc xs instance Eq a => Eq (Vec n a) where (==) = eq# (/=) = neq# {-# NOINLINE eq# #-} eq# :: Eq a => Vec n a -> Vec n a -> Bool eq# v1 v2 = foldr (&&) True (zipWith (==) v1 v2) {-# NOINLINE neq# #-} neq# :: Eq a => Vec n a -> Vec n a -> Bool neq# v1 v2 = not (eq# v1 v2) instance Ord a => Ord (Vec n a) where compare x y = foldr f EQ $ zipWith compare x y where f EQ keepGoing = keepGoing f done _ = done -- | __NB__: Not synthesisable instance KnownNat n => Applicative (Vec n) where pure = repeat fs <*> xs = zipWith ($) fs xs instance F.Foldable (Vec n) where foldr = foldr instance Functor (Vec n) where fmap = map -- | __NB__: Not synthesisable instance Traversable (Vec n) where traverse = traverse# {-# NOINLINE traverse# #-} traverse# :: Applicative f => (a -> f b) -> Vec n a -> f (Vec n b) traverse# _ Nil = pure Nil traverse# f (x :> xs) = (:>) <$> f x <*> traverse# f xs instance (Default a, KnownNat n) => Default (Vec n a) where def = repeat def {-# INLINE singleton #-} -- | Create a vector of one element -- -- >>> singleton 5 -- <5> singleton :: a -> Vec 1 a singleton = (:> Nil) {-# NOINLINE head #-} -- | Extract the first element of a vector -- -- >>> head (1:>2:>3:>Nil) -- 1 -- >>> head Nil -- <BLANKLINE> -- <interactive>:... -- Couldn't match type ‘...’ with ‘0’ -- Expected type: Vec ... a -- Actual type: Vec 0 a -- In the first argument of ‘head’, namely ‘Nil’ -- In the expression: head Nil head :: Vec (n + 1) a -> a head (x :> _) = x {-# NOINLINE tail #-} -- | Extract the elements after the head of a vector -- -- >>> tail (1:>2:>3:>Nil) -- <2,3> -- >>> tail Nil -- <BLANKLINE> -- <interactive>:... -- Couldn't match type ‘...’ with ‘0’ -- Expected type: Vec ... a -- Actual type: Vec 0 a -- In the first argument of ‘tail’, namely ‘Nil’ -- In the expression: tail Nil tail :: Vec (n + 1) a -> Vec n a tail (_ :> xs) = xs {-# NOINLINE last #-} -- | Extract the last element of a vector -- -- >>> last (1:>2:>3:>Nil) -- 3 -- >>> last Nil -- <BLANKLINE> -- <interactive>:... -- Couldn't match type ‘...’ with ‘0’ -- Expected type: Vec ... a -- Actual type: Vec 0 a -- In the first argument of ‘last’, namely ‘Nil’ -- In the expression: last Nil last :: Vec (n + 1) a -> a last (x :> Nil) = x last (_ :> y :> ys) = last (y :> ys) {-# NOINLINE init #-} -- | Extract all the elements of a vector except the last element -- -- >>> init (1:>2:>3:>Nil) -- <1,2> -- >>> init Nil -- <BLANKLINE> -- <interactive>:... -- Couldn't match type ‘...’ with ‘0’ -- Expected type: Vec ... a -- Actual type: Vec 0 a -- In the first argument of ‘init’, namely ‘Nil’ -- In the expression: init Nil init :: Vec (n + 1) a -> Vec n a init (_ :> Nil) = Nil init (x :> y :> ys) = x :> init (y :> ys) {-# INLINE shiftInAt0 #-} -- | Shift in elements to the head of a vector, bumping out elements at the -- tail. The result is a tuple containing: -- -- * The new vector -- * The shifted out elements -- -- >>> shiftInAt0 (1 :> 2 :> 3 :> 4 :> Nil) ((-1) :> 0 :> Nil) -- (<-1,0,1,2>,<3,4>) -- >>> shiftInAt0 (1 :> Nil) ((-1) :> 0 :> Nil) -- (<-1>,<0,1>) shiftInAt0 :: KnownNat n => Vec n a -- ^ The old vector -> Vec m a -- ^ The elements to shift in at the head -> (Vec n a, Vec m a) -- ^ (The new vector, shifted out elements) shiftInAt0 xs ys = splitAtI zs where zs = ys ++ xs {-# INLINE shiftInAtN #-} -- | Shift in element to the tail of a vector, bumping out elements at the head. -- The result is a tuple containing: -- -- * The new vector -- * The shifted out elements -- -- >>> shiftInAtN (1 :> 2 :> 3 :> 4 :> Nil) (5 :> 6 :> Nil) -- (<3,4,5,6>,<1,2>) -- >>> shiftInAtN (1 :> Nil) (2 :> 3 :> Nil) -- (<3>,<1,2>) shiftInAtN :: KnownNat m => Vec n a -- ^ The old vector -> Vec m a -- ^ The elements to shift in at the tail -> (Vec n a,Vec m a) -- ^ (The new vector, shifted out elements) shiftInAtN xs ys = (zsR, zsL) where zs = xs ++ ys (zsL,zsR) = splitAtI zs infixl 5 <: {-# INLINE (<:) #-} -- | Add an element to the tail of a vector. -- -- >>> (3:>4:>5:>Nil) <: 1 -- <3,4,5,1> -- >>> let x = (3:>4:>5:>Nil) <: 1 -- >>> :t x -- x :: Num a => Vec 4 a (<:) :: Vec n a -> a -> Vec (n + 1) a xs <: x = xs ++ singleton x infixr 4 +>> {-# INLINE (+>>) #-} -- | Add an element to the head of a vector, and extract all but the last -- element. -- -- >>> 1 +>> (3:>4:>5:>Nil) -- <1,3,4> -- >>> 1 +>> Nil -- <> (+>>) :: KnownNat n => a -> Vec n a -> Vec n a s +>> xs = fst (shiftInAt0 xs (singleton s)) infixl 4 <<+ {-# INLINE (<<+) #-} -- | Add an element to the tail of a vector, and extract all but the first -- element. -- -- >>> (3:>4:>5:>Nil) <<+ 1 -- <4,5,1> -- >>> Nil <<+ 1 -- <> (<<+) :: Vec n a -> a -> Vec n a xs <<+ s = fst (shiftInAtN xs (singleton s)) {-# INLINE shiftOutFrom0 #-} -- | Shift @m@ elements out from the head of a vector, filling up the tail with -- 'Default' values. The result is a tuple containing: -- -- * The new vector -- * The shifted out values -- -- >>> shiftOutFrom0 d2 ((1 :> 2 :> 3 :> 4 :> 5 :> Nil) :: Vec 5 Integer) -- (<3,4,5,0,0>,<1,2>) shiftOutFrom0 :: (Default a, KnownNat m) => SNat m -- ^ @m@, the number of elements to shift out -> Vec (m + n) a -- ^ The old vector -> (Vec (m + n) a, Vec m a) -- ^ (The new vector, shifted out elements) shiftOutFrom0 m xs = shiftInAtN xs (replicate m def) {-# INLINE shiftOutFromN #-} -- | Shift @m@ elements out from the tail of a vector, filling up the head with -- 'Default' values. The result is a tuple containing: -- -- * The new vector -- * The shifted out values -- -- >>> shiftOutFromN d2 ((1 :> 2 :> 3 :> 4 :> 5 :> Nil) :: Vec 5 Integer) -- (<0,0,1,2,3>,<4,5>) shiftOutFromN :: (Default a, KnownNat (m + n)) => SNat m -- ^ @m@, the number of elements to shift out -> Vec (m + n) a -- ^ The old vector -> (Vec (m + n) a, Vec m a) -- ^ (The new vector, shifted out elements) shiftOutFromN m xs = shiftInAt0 xs (replicate m def) infixr 5 ++ {-# NOINLINE (++) #-} -- | Append two vectors -- -- >>> (1:>2:>3:>Nil) ++ (7:>8:>Nil) -- <1,2,3,7,8> (++) :: Vec n a -> Vec m a -> Vec (n + m) a Nil ++ ys = ys (x :> xs) ++ ys = x :> xs ++ ys {-# NOINLINE splitAt #-} -- | Split a vector into two vectors at the given point -- -- >>> splitAt (snat :: SNat 3) (1:>2:>3:>7:>8:>Nil) -- (<1,2,3>,<7,8>) -- >>> splitAt d3 (1:>2:>3:>7:>8:>Nil) -- (<1,2,3>,<7,8>) splitAt :: SNat m -> Vec (m + n) a -> (Vec m a, Vec n a) splitAt n xs = splitAtU (toUNat n) xs splitAtU :: UNat m -> Vec (m + n) a -> (Vec m a, Vec n a) splitAtU UZero ys = (Nil,ys) splitAtU (USucc s) (y :> ys) = let (as,bs) = splitAtU s ys in (y :> as, bs) {-# INLINE splitAtI #-} -- | Split a vector into two vectors where the length of the two is determined -- by the context -- -- >>> splitAtI (1:>2:>3:>7:>8:>Nil) :: (Vec 2 Int, Vec 3 Int) -- (<1,2>,<3,7,8>) splitAtI :: KnownNat m => Vec (m + n) a -> (Vec m a, Vec n a) splitAtI = withSNat splitAt {-# NOINLINE concat #-} -- | Concatenate a vector of vectors -- -- >>> concat ((1:>2:>3:>Nil) :> (4:>5:>6:>Nil) :> (7:>8:>9:>Nil) :> (10:>11:>12:>Nil) :> Nil) -- <1,2,3,4,5,6,7,8,9,10,11,12> concat :: Vec n (Vec m a) -> Vec (n * m) a concat Nil = Nil concat (x :> xs) = x ++ concat xs {-# NOINLINE unconcat #-} -- | Split a vector of (n * m) elements into a vector of vectors with length m, -- where m is given -- -- >>> unconcat d4 (1:>2:>3:>4:>5:>6:>7:>8:>9:>10:>11:>12:>Nil) -- <<1,2,3,4>,<5,6,7,8>,<9,10,11,12>> unconcat :: KnownNat n => SNat m -> Vec (n * m) a -> Vec n (Vec m a) unconcat n xs = unconcatU (withSNat toUNat) (toUNat n) xs unconcatU :: UNat n -> UNat m -> Vec (n * m) a -> Vec n (Vec m a) unconcatU UZero _ _ = Nil unconcatU (USucc n') m ys = let (as,bs) = splitAtU m ys in as :> unconcatU n' m bs {-# INLINE unconcatI #-} -- | Split a vector of (n * m) elements into a vector of vectors with length m, -- where m is determined by the context -- -- >>> unconcatI (1:>2:>3:>4:>5:>6:>7:>8:>9:>10:>11:>12:>Nil) :: Vec 2 (Vec 6 Int) -- <<1,2,3,4,5,6>,<7,8,9,10,11,12>> unconcatI :: (KnownNat n, KnownNat m) => Vec (n * m) a -> Vec n (Vec m a) unconcatI = withSNat unconcat {-# NOINLINE merge #-} -- | Merge two vectors, alternating their elements, i.e., -- -- >>> merge (1 :> 2 :> 3 :> 4 :> Nil) (5 :> 6 :> 7 :> 8 :> Nil) -- <1,5,2,6,3,7,4,8> merge :: Vec n a -> Vec n a -> Vec (n + n) a merge Nil Nil = Nil merge (x :> xs) (y :> ys) = x :> y :> merge xs ys {-# NOINLINE reverse #-} -- | Returns the elements in a vector in reverse order -- -- >>> reverse (1:>2:>3:>4:>Nil) -- <4,3,2,1> reverse :: Vec n a -> Vec n a reverse Nil = Nil reverse (x :> xs) = reverse xs <: x {-# NOINLINE map #-} -- | 'map' @f xs@ is the vector obtained by applying @f@ to each element -- of @xs@, i.e., -- -- > map f (x1 :> x2 :> ... :> xn :> Nil) == (f x1 :> f x2 :> ... :> f xn :> Nil) -- -- and corresponds to the following circuit layout: -- -- <<doc/map.svg>> map :: (a -> b) -> Vec n a -> Vec n b map _ Nil = Nil map f (x :> xs) = f x :> map f xs {-# NOINLINE zipWith #-} -- | 'zipWith' generalises 'zip' by zipping with the function given -- as the first argument, instead of a tupling function. -- For example, @'zipWith' (+)@ is applied to two vectors to produce the -- vector of corresponding sums. -- -- > zipWith f (x1 :> x2 :> ... xn :> Nil) (y1 :> y2 :> ... :> yn :> Nil) == (f x1 y1 :> f x2 y2 :> ... :> f xn yn :> Nil) -- -- @zipWith f xs ys@ corresponds to the following circuit layout: -- -- <<doc/zipWith.svg>> -- -- __NB:__ 'zipWith' is /strict/ in its second argument, and /lazy/ in its -- third. This matters when 'zipWith' is used in a recursive setting. See -- 'lazyV' for more information. zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c zipWith _ Nil _ = Nil zipWith f (x :> xs) ys = f x (head ys) :> zipWith f xs (tail ys) {-# INLINE zipWith3 #-} -- | 'zipWith3' generalises 'zip3' by zipping with the function given -- as the first argument, instead of a tupling function. -- -- > zipWith3 f (x1 :> x2 :> ... xn :> Nil) (y1 :> y2 :> ... :> yn :> Nil) (z1 :> z2 :> ... :> zn :> Nil) == (f x1 y1 z1 :> f x2 y2 z2 :> ... :> f xn yn zn :> Nil) -- -- @zipWith3 f xs ys zs@ corresponds to the following circuit layout: -- -- <<doc/zipWith3.svg>> -- -- __NB:__ 'zipWith3' is /strict/ in its second argument, and /lazy/ in its -- third and fourth. This matters when 'zipWith3' is used in a recursive setting. -- See 'lazyV' for more information. zipWith3 :: (a -> b -> c -> d) -> Vec n a -> Vec n b -> Vec n c -> Vec n d zipWith3 f us vs ws = zipWith (\a (b,c) -> f a b c) us (zip vs ws) {-# INLINABLE foldr #-} -- | 'foldr', applied to a binary operator, a starting value (typically -- the right-identity of the operator), and a vector, reduces the vector -- using the binary operator, from right to left: -- -- > foldr f z (x1 :> ... :> xn1 :> xn :> Nil) == x1 `f` (... (xn1 `f` (xn `f` z))...) -- > foldr r z Nil == z -- -- >>> foldr (/) 1 (5 :> 4 :> 3 :> 2 :> Nil) -- 1.875 -- -- @foldr f z xs@ corresponds to the following circuit layout: -- -- <<doc/foldr.svg>> -- -- __NB__: @"'foldr' f z xs"@ produces a linear structure, which has a depth, or -- delay, of O(@'length' xs@). Use 'fold' if your binary operator @f@ is -- associative, as @"'fold' f xs"@ produces a structure with a depth of -- O(log_2(@'length' xs@)). foldr :: (a -> b -> b) -> b -> Vec n a -> b foldr f z xs = head (scanr f z xs) {-# INLINABLE foldl #-} -- | 'foldl', applied to a binary operator, a starting value (typically -- the left-identity of the operator), and a vector, reduces the vector -- using the binary operator, from left to right: -- -- > foldl f z (x1 :> x2 :> ... :> xn :> Nil) == (...((z `f` x1) `f` x2) `f`...) `f` xn -- > foldl f z Nil == z -- -- >>> foldl (/) 1 (5 :> 4 :> 3 :> 2 :> Nil) -- 8.333333333333333e-3 -- -- @foldl f z xs@ corresponds to the following circuit layout: -- -- <<doc/foldl.svg>> -- -- __NB__: @"'foldl' f z xs"@ produces a linear structure, which has a depth, or -- delay, of O(@'length' xs@). Use 'fold' if your binary operator @f@ is -- associative, as @"'fold' f xs"@ produces a structure with a depth of -- O(log_2(@'length' xs@)). foldl :: (b -> a -> b) -> b -> Vec n a -> b foldl f z xs = last (scanl f z xs) {-# INLINABLE foldr1 #-} -- | 'foldr1' is a variant of 'foldr' that has no starting value argument, -- and thus must be applied to non-empty vectors. -- -- > foldr1 f (x1 :> ... :> xn2 :> xn1 :> xn :> Nil) == x1 `f` (... (xn2 `f` (xn1 `f` xn))...) -- > foldr1 f (x1 :> Nil) == x1 -- > foldr1 f Nil == TYPE ERROR -- -- >>> foldr1 (/) (5 :> 4 :> 3 :> 2 :> 1 :> Nil) -- 1.875 -- -- @foldr1 f xs@ corresponds to the following circuit layout: -- -- <<doc/foldr1.svg>> -- -- __NB__: @"'foldr1' f z xs"@ produces a linear structure, which has a depth, -- or delay, of O(@'length' xs@). Use 'fold' if your binary operator @f@ is -- associative, as @"'fold' f xs"@ produces a structure with a depth of -- O(log_2(@'length' xs@)). foldr1 :: (a -> a -> a) -> Vec (n + 1) a -> a foldr1 f xs = foldr f (last xs) (init xs) {-# INLINE foldl1 #-} -- | 'foldl1' is a variant of 'foldl' that has no starting value argument, -- and thus must be applied to non-empty vectors. -- -- > foldl1 f (x1 :> x2 :> x3 :> ... :> xn :> Nil) == (...((x1 `f` x2) `f` x3) `f`...) `f` xn -- > foldl1 f (x1 :> Nil) == x1 -- > foldl1 f Nil == TYPE ERROR -- -- >>> foldl1 (/) (1 :> 5 :> 4 :> 3 :> 2 :> Nil) -- 8.333333333333333e-3 -- -- @foldl1 f xs@ corresponds to the following circuit layout: -- -- <<doc/foldl1.svg>> -- -- __NB__: @"'foldl1' f z xs"@ produces a linear structure, which has a depth, -- or delay, of O(@'length' xs@). Use 'fold' if your binary operator @f@ is -- associative, as @"'fold' f xs"@ produces a structure with a depth of -- O(log_2(@'length' xs@)). foldl1 :: (a -> a -> a) -> Vec (n + 1) a -> a foldl1 f xs = foldl f (head xs) (tail xs) {-# NOINLINE fold #-} -- | 'fold' is a variant of 'foldr1' and 'foldl1', but instead of reducing from -- right to left, or left to right, it reduces a vector using a tree-like -- structure. The depth, or delay, of the structure produced by -- \"@'fold' f xs@\", is hence @O(log_2('length' xs))@, and not -- @O('length' xs)@. -- -- __NB__: The binary operator \"@f@ in @'fold' f xs@\" must be associative. -- __NB__: Not synthesisable -- -- > fold f (x1 :> x2 :> ... :> xn1 :> xn :> Nil) == ((x1 `f` x2) `f` ...) `f` (... `f` (xn1 `f` xn)) -- > fold f (x1 :> Nil) == x1 -- > fold f Nil == TYPE ERROR -- -- >>> fold (+) (5 :> 4 :> 3 :> 2 :> 1 :> Nil) -- 15 fold :: (a -> a -> a) -> Vec (n + 1) a -> a fold f vs = fold' (toList vs) where fold' [x] = x fold' xs = fold' ys `f` fold' zs where (ys,zs) = P.splitAt (P.length xs `div` 2) xs {-# INLINE scanl #-} -- | 'scanl' is similar to 'foldl', but returns a vector of successive reduced -- values from the left: -- -- > scanl f z (x1 :> x2 :> ... :> Nil) == z :> (z `f` x1) :> ((z `f` x1) `f` x2) :> ... :> Nil -- -- >>> scanl (+) 0 (5 :> 4 :> 3 :> 2 :> Nil) -- <0,5,9,12,14> -- -- @scanl f z xs@ corresponds to the following circuit layout: -- -- <<doc/scanl.svg>> -- -- __NB__: -- -- > last (scanl f z xs) == foldl f z xs scanl :: (b -> a -> b) -> b -> Vec n a -> Vec (n + 1) b scanl f z xs = ws where ws = z :> zipWith (flip f) xs (init ws) {-# INLINE sscanl #-} -- | 'sscanl' is a variant of 'scanl' where the first result is dropped: -- -- > sscanl f z (x1 :> x2 :> ... :> Nil) == (z `f` x1) :> ((z `f` x1) `f` x2) :> ... :> Nil -- -- >>> sscanl (+) 0 (5 :> 4 :> 3 :> 2 :> Nil) -- <5,9,12,14> -- -- @sscanl f z xs@ corresponds to the following circuit layout: -- -- <<doc/sscanl.svg>> sscanl :: (b -> a -> b) -> b -> Vec n a -> Vec n b sscanl f z xs = tail (scanl f z xs) {-# INLINE scanr #-} -- | 'scanr' is similar to 'foldr', but returns a vector of successive reduced -- values from the right: -- -- > scanr f z (... :> xn1 :> xn :> Nil) == ... :> (xn1 `f` (xn `f` z)) :> (xn `f` z) :> z :> Nil -- -- >>> scanr (+) 0 (5 :> 4 :> 3 :> 2 :> Nil) -- <14,9,5,2,0> -- -- @scanr f z xs@ corresponds to the following circuit layout: -- -- <<doc/scanr.svg>> -- -- __NB__: -- -- > head (scanr f z xs) == foldr f z xs scanr :: (a -> b -> b) -> b -> Vec n a -> Vec (n + 1) b scanr f z xs = ws where ws = zipWith f xs ((tail ws)) <: z {-# INLINE sscanr #-} -- | 'sscanr' is a variant of 'scanr' that where the last result is dropped: -- -- > sscanr f z (... :> xn1 :> xn :> Nil) == ... :> (xn1 `f` (xn `f` z)) :> (xn `f` z) :> Nil -- -- >>> sscanr (+) 0 (5 :> 4 :> 3 :> 2 :> Nil) -- <14,9,5,2> -- -- @sscanr f z xs@ corresponds to the following circuit layout: -- -- <<doc/sscanr.svg>> sscanr :: (a -> b -> b) -> b -> Vec n a -> Vec n b sscanr f z xs = init (scanr f z xs) {-# INLINE mapAccumL #-} -- | The 'mapAccumL' function behaves like a combination of 'map' and 'foldl'; -- it applies a function to each element of a vector, passing an accumulating -- parameter from left to right, and returning a final value of this accumulator -- together with the new vector. -- -- >>> mapAccumL (\acc x -> (acc + x,acc + 1)) 0 (1 :> 2 :> 3 :> 4 :> Nil) -- (10,<1,2,4,7>) -- -- @mapAccumL f acc xs@ corresponds to the following circuit layout: -- -- <<doc/mapAccumL.svg>> mapAccumL :: (acc -> x -> (acc,y)) -> acc -> Vec n x -> (acc,Vec n y) mapAccumL f acc xs = (acc',ys) where accs = acc :> accs' ws = zipWith (flip f) xs (init accs) accs' = map fst ws ys = map snd ws acc' = last accs {-# INLINE mapAccumR #-} -- | The 'mapAccumR' function behaves like a combination of 'map' and 'foldr'; -- it applies a function to each element of a vector, passing an accumulating -- parameter from right to left, and returning a final value of this accumulator -- together with the new vector. -- -- >>> mapAccumR (\acc x -> (acc + x,acc + 1)) 0 (1 :> 2 :> 3 :> 4 :> Nil) -- (10,<10,8,5,1>) -- -- @mapAccumR f acc xs@ corresponds to the following circuit layout: -- -- <<doc/mapAccumR.svg>> mapAccumR :: (acc -> x -> (acc,y)) -> acc -> Vec n x -> (acc, Vec n y) mapAccumR f acc xs = (acc',ys) where accs = accs' <: acc ws = zipWith (flip f) xs (tail accs) accs' = map fst ws ys = map snd ws acc' = head accs {-# INLINE zip #-} -- | 'zip' takes two vectors and returns a vector of corresponding pairs. -- -- >>> zip (1:>2:>3:>4:>Nil) (4:>3:>2:>1:>Nil) -- <(1,4),(2,3),(3,2),(4,1)> zip :: Vec n a -> Vec n b -> Vec n (a,b) zip = zipWith (,) {-# INLINE zip3 #-} -- | 'zip' takes three vectors and returns a vector of corresponding triplets. -- -- >>> zip3 (1:>2:>3:>4:>Nil) (4:>3:>2:>1:>Nil) (5:>6:>7:>8:>Nil) -- <(1,4,5),(2,3,6),(3,2,7),(4,1,8)> zip3 :: Vec n a -> Vec n b -> Vec n c -> Vec n (a,b,c) zip3 = zipWith3 (,,) {-# INLINE unzip #-} -- | 'unzip' transforms a vector of pairs into a vector of first components -- and a vector of second components. -- -- >>> unzip ((1,4):>(2,3):>(3,2):>(4,1):>Nil) -- (<1,2,3,4>,<4,3,2,1>) unzip :: Vec n (a,b) -> (Vec n a, Vec n b) unzip xs = (map fst xs, map snd xs) {-# INLINE unzip3 #-} -- | 'unzip3' transforms a vector of triplets into a vector of first components, -- a vector of second components, and a vector of third components. -- -- >>> unzip3 ((1,4,5):>(2,3,6):>(3,2,7):>(4,1,8):>Nil) -- (<1,2,3,4>,<4,3,2,1>,<5,6,7,8>) unzip3 :: Vec n (a,b,c) -> (Vec n a, Vec n b, Vec n c) unzip3 xs = ( map (\(x,_,_) -> x) xs , map (\(_,y,_) -> y) xs , map (\(_,_,z) -> z) xs ) {-# NOINLINE index_int #-} index_int :: KnownNat n => Vec n a -> Int -> a index_int xs i@(I# n0) | isTrue# (n0 <# 0#) = error "CLaSH.Sized.Vector.(!!): negative index" | otherwise = sub xs n0 where sub :: Vec m a -> Int# -> a sub Nil _ = error (P.concat [ "CLaSH.Sized.Vector.(!!): index " , show i , " is larger than maximum index " , show (maxIndex xs) ]) sub (y:>(!ys)) n = if isTrue# (n ==# 0#) then y else sub ys (n -# 1#) {-# INLINE (!!) #-} -- | Vector index (subscript) operator. -- -- __NB__: vector elements have an __ASCENDING__ subscript starting from 0 and -- ending at 'maxIndex'. -- -- >>> (1:>2:>3:>4:>5:>Nil) !! 4 -- 5 -- >>> (1:>2:>3:>4:>5:>Nil) !! maxIndex (1:>2:>3:>4:>5:>Nil) -- 5 -- >>> (1:>2:>3:>4:>5:>Nil) !! 1 -- 2 -- >>> (1:>2:>3:>4:>5:>Nil) !! 14 -- *** Exception: CLaSH.Sized.Vector.(!!): index 14 is larger than maximum index 4 (!!) :: (KnownNat n, Enum i) => Vec n a -> i -> a xs !! i = index_int xs (fromEnum i) {-# NOINLINE maxIndex #-} -- | Index (subscript) of the last element in a 'Vec'tor -- -- >>> maxIndex (6 :> 7 :> 8 :> Nil) -- 2 maxIndex :: KnownNat n => Vec n a -> Integer maxIndex = subtract 1 . length {-# NOINLINE length #-} -- | Length of a 'Vec'tor as an Integer -- -- >>> length (6 :> 7 :> 8 :> Nil) -- 3 length :: KnownNat n => Vec n a -> Integer length = natVal . asNatProxy {-# NOINLINE replace_int #-} replace_int :: KnownNat n => Vec n a -> Int -> a -> Vec n a replace_int xs i@(I# n0) a | isTrue# (n0 <# 0#) = error "CLaSH.Sized.Vector.replace: negative index" | otherwise = sub xs n0 a where sub :: Vec m b -> Int# -> b -> Vec m b sub Nil _ _ = error (P.concat [ "CLaSH.Sized.Vector.replace: index " , show i , " is larger than maximum index " , show (maxIndex xs) ]) sub (y:>(!ys)) n b = if isTrue# (n ==# 0#) then b :> ys else y :> sub ys (n -# 1#) b {-# INLINE replace #-} -- | Replace an element of a vector at the given index (subscript). -- -- __NB__: vector elements have an __ASCENDING__ subscript starting from 0 and -- ending at 'maxIndex'. -- -- >>> replace 3 7 (1:>2:>3:>4:>5:>Nil) -- <1,2,3,7,5> -- >>> replace 0 7 (1:>2:>3:>4:>5:>Nil) -- <7,2,3,4,5> -- >>> replace 9 7 (1:>2:>3:>4:>5:>Nil) -- <1,2,3,4,*** Exception: CLaSH.Sized.Vector.replace: index 9 is larger than maximum index 4 replace :: (KnownNat n, Enum i) => i -> a -> Vec n a -> Vec n a replace i y xs = replace_int xs (fromEnum i) y {-# INLINABLE take #-} -- | 'take' @n@, applied to a vector @xs@, returns the @n@-length prefix of @xs@ -- -- >>> take (snat :: SNat 3) (1:>2:>3:>4:>5:>Nil) -- <1,2,3> -- >>> take d3 (1:>2:>3:>4:>5:>Nil) -- <1,2,3> -- >>> take d0 (1:>2:>Nil) -- <> -- >>> take d4 (1:>2:>Nil) -- <BLANKLINE> -- <interactive>:... -- Couldn't match type ‘4 + n0’ with ‘2’ -- The type variable ‘n0’ is ambiguous -- Expected type: Vec (4 + n0) a -- Actual type: Vec (1 + 1) a -- In the second argument of ‘take’, namely ‘(1 :> 2 :> Nil)’ -- In the expression: take d4 (1 :> 2 :> Nil) -- In an equation for ‘it’: it = take d4 (1 :> 2 :> Nil) take :: SNat m -> Vec (m + n) a -> Vec m a take n = fst . splitAt n {-# INLINE takeI #-} -- | 'takeI' @xs@, returns the prefix of @xs@ as demanded by the context -- -- >>> takeI (1:>2:>3:>4:>5:>Nil) :: Vec 2 Int -- <1,2> takeI :: KnownNat m => Vec (m + n) a -> Vec m a takeI = withSNat take {-# INLINE drop #-} -- | 'drop' @n xs@ returns the suffix of @xs@ after the first @n@ elements -- -- >>> drop (snat :: SNat 3) (1:>2:>3:>4:>5:>Nil) -- <4,5> -- >>> drop d3 (1:>2:>3:>4:>5:>Nil) -- <4,5> -- >>> drop d0 (1:>2:>Nil) -- <1,2> -- >>> drop d4 (1:>2:>Nil) -- <BLANKLINE> -- <interactive>:... -- Couldn't match expected type ‘2’ with actual type ‘4 + n0’ -- The type variable ‘n0’ is ambiguous -- In the first argument of ‘print’, namely ‘it’ -- In a stmt of an interactive GHCi command: print it drop :: SNat m -> Vec (m + n) a -> Vec n a drop n = snd . splitAt n {-# INLINE dropI #-} -- | 'dropI' @xs@, returns the suffix of @xs@ as demanded by the context -- -- >>> dropI (1:>2:>3:>4:>5:>Nil) :: Vec 2 Int -- <4,5> dropI :: KnownNat m => Vec (m + n) a -> Vec n a dropI = withSNat drop {-# INLINE at #-} -- | 'at' @n xs@ returns @n@'th element of @xs@ -- -- __NB__: vector elements have an __ASCENDING__ subscript starting from 0 and -- ending at 'maxIndex'. -- -- >>> at (snat :: SNat 1) (1:>2:>3:>4:>5:>Nil) -- 2 -- >>> at d1 (1:>2:>3:>4:>5:>Nil) -- 2 at :: SNat m -> Vec (m + (n + 1)) a -> a at n xs = head $ snd $ splitAt n xs {-# NOINLINE select #-} -- | 'select' @f s n xs@ selects @n@ elements with stepsize @s@ and -- offset @f@ from @xs@ -- -- >>> select (snat :: SNat 1) (snat :: SNat 2) (snat :: SNat 3) (1:>2:>3:>4:>5:>6:>7:>8:>Nil) -- <2,4,6> -- >>> select d1 d2 d3 (1:>2:>3:>4:>5:>6:>7:>8:>Nil) -- <2,4,6> select :: (CmpNat (i + s) (s * n) ~ 'GT) => SNat f -> SNat s -> SNat n -> Vec (f + i) a -> Vec n a select f s n xs = select' (toUNat n) $ drop f xs where select' :: UNat n -> Vec i a -> Vec n a select' UZero _ = Nil select' (USucc n') vs@(x :> _) = x :> select' n' (drop s (unsafeCoerce vs)) {-# INLINE selectI #-} -- | 'selectI' @f s xs@ selects as many elements as demanded by the context -- with stepsize @s@ and offset @f@ from @xs@ -- -- >>> selectI d1 d2 (1:>2:>3:>4:>5:>6:>7:>8:>Nil) :: Vec 2 Int -- <2,4> selectI :: (CmpNat (i + s) (s * n) ~ 'GT, KnownNat n) => SNat f -> SNat s -> Vec (f + i) a -> Vec n a selectI f s xs = withSNat (\n -> select f s n xs) {-# NOINLINE replicate #-} -- | 'replicate' @n a@ returns a vector that has @n@ copies of @a@ -- -- >>> replicate (snat :: SNat 3) 6 -- <6,6,6> -- >>> replicate d3 6 -- <6,6,6> replicate :: SNat n -> a -> Vec n a replicate n a = replicateU (toUNat n) a replicateU :: UNat n -> a -> Vec n a replicateU UZero _ = Nil replicateU (USucc s) x = x :> replicateU s x {-# INLINE repeat #-} -- | 'repeat' @a@ creates a vector with as many copies of @a@ as demanded by the -- context -- -- >>> repeat 6 :: Vec 5 Int -- <6,6,6,6,6> repeat :: KnownNat n => a -> Vec n a repeat = withSNat replicate {-# INLINE iterate #-} -- | 'iterate' @n f x@ returns a vector starting with @x@ followed by @n@ -- repeated applications of @f@ to @x@ -- -- > iterate (snat :: SNat 4) f x == (x :> f x :> f (f x) :> f (f (f x)) :> Nil) -- > iterate d4 f x == (x :> f x :> f (f x) :> f (f (f x)) :> Nil) -- -- >>> iterate d4 (+1) 1 -- <1,2,3,4> -- -- @interate n f z@ corresponds to the following circuit layout: -- -- <<doc/iterate.svg>> iterate :: SNat n -> (a -> a) -> a -> Vec n a iterate (SNat _) = iterateI {-# INLINE iterateI #-} -- | 'iterate' @f x@ returns a vector starting with @x@ followed by @n@ -- repeated applications of @f@ to @x@, where @n@ is determined by the context -- -- > iterateI f x :: Vec 3 a == (x :> f x :> f (f x) :> Nil) -- -- >>> iterateI (+1) 1 :: Vec 3 Int -- <1,2,3> -- -- @interateI f z@ corresponds to the following circuit layout: -- -- <<doc/iterate.svg>> iterateI :: KnownNat n => (a -> a) -> a -> Vec n a iterateI f a = xs where xs = init (a :> ws) ws = map f (lazyV xs) {-# INLINE generate #-} -- | 'generate' @n f x@ returns a vector with @n@ repeated applications of @f@ -- to @x@ -- -- > generate (snat :: SNat 4) f x == (f x :> f (f x) :> f (f (f x)) :> f (f (f (f x))) :> Nil) -- > generate d4 f x == (f x :> f (f x) :> f (f (f x)) :> f (f (f (f x))) :> Nil) -- -- >>> generate d4 (+1) 1 -- <2,3,4,5> -- -- @generate n f z@ corresponds to the following circuit layout: -- -- <<doc/generate.svg>> generate :: SNat n -> (a -> a) -> a -> Vec n a generate (SNat _) f a = iterateI f (f a) {-# INLINE generateI #-} -- | 'generate' @f x@ returns a vector with @n@ repeated applications of @f@ -- to @x@, where @n@ is determined by the context -- -- > generateI f x :: Vec 3 a == (f x :> f (f x) :> f (f (f x)) :> Nil) -- -- >>> generateI (+1) 1 :: Vec 3 Int -- <2,3,4> -- -- @generateI f z@ corresponds to the following circuit layout: -- -- <<doc/generate.svg>> generateI :: KnownNat n => (a -> a) -> a -> Vec n a generateI f a = iterateI f (f a) {-# INLINE toList #-} -- | Convert a vector to a list -- -- >>> toList (1:>2:>3:>Nil) -- [1,2,3] -- -- __NB__: Not synthesisable toList :: Vec n a -> [a] toList = foldr (:) [] -- | Create a vector literal from a list literal -- -- > $(v [1::Signed 8,2,3,4,5]) == (8:>2:>3:>4:>5:>Nil) :: Vec 5 (Signed 8) -- -- >>> [1 :: Signed 8,2,3,4,5] -- [1,2,3,4,5] -- >>> $(v [1::Signed 8,2,3,4,5]) -- <1,2,3,4,5> v :: Lift a => [a] -> ExpQ v [] = [| Nil |] v (x:xs) = [| x :> $(v xs) |] -- | 'Vec'tor as a 'Proxy' for 'Nat' asNatProxy :: Vec n a -> Proxy n asNatProxy _ = Proxy {-# NOINLINE lazyV #-} -- | For when your vector functions are too strict in their arguments -- -- For example: -- -- @ -- -- Bubble sort for 1 iteration -- sortV xs = 'map' fst sorted '<:' (snd ('last' sorted)) -- where -- lefts = 'head' xs :> 'map' snd ('init' sorted) -- rights = 'tail' xs -- sorted = 'zipWith' compareSwapL lefts rights -- -- -- Compare and swap -- compareSwapL a b = if a < b then (a,b) -- else (b,a) -- @ -- -- Will not terminate because 'zipWith' is too strict in its second argument: -- -- >>> sortV (4 :> 1 :> 2 :> 3 :> Nil) -- <*** Exception: <<loop>> -- -- In this case, adding 'lazyV' on 'zipWith's second argument: -- -- @ -- sortVL xs = 'map' fst sorted '<:' (snd ('last' sorted)) -- where -- lefts = 'head' xs :> map snd ('init' sorted) -- rights = 'tail' xs -- sorted = 'zipWith' compareSwapL ('lazyV' lefts) rights -- @ -- -- Results in a successful computation: -- -- >>> sortVL (4 :> 1 :> 2 :> 3 :> Nil) -- <1,2,3,4> -- -- __NB__: There is also a solution using 'flip', but it slightly obfuscates the -- meaning of the code: -- -- @ -- sortV_flip xs = 'map' fst sorted '<:' (snd ('last' sorted)) -- where -- lefts = 'head' xs :> 'map' snd ('init' sorted) -- rights = 'tail' xs -- sorted = 'zipWith' ('flip' compareSwapL) rights lefts -- @ -- -- >>> sortV_flip (4 :> 1 :> 2 :> 3 :> Nil) -- <1,2,3,4> lazyV :: KnownNat n => Vec n a -> Vec n a lazyV = lazyV' (repeat undefined) where lazyV' :: Vec n a -> Vec n a -> Vec n a lazyV' Nil _ = Nil lazyV' (_ :> xs) ys = head ys :> lazyV' xs (tail ys) {-# NOINLINE dfold #-} -- | A /dependently/ typed fold. -- -- __NB__: Not synthesisable -- -- Using lists, we can define @append@ ('Prelude.++') using 'Prelude.foldr': -- -- >>> import qualified Prelude -- >>> let append xs ys = Prelude.foldr (:) ys xs -- >>> append [1,2] [3,4] -- [1,2,3,4] -- -- However, when we try to do the same for 'Vec': -- -- @ -- append' xs ys = 'foldr' (:>) ys xs -- @ -- -- We get a type error -- -- >>> let append' xs ys = foldr (:>) ys xs -- <BLANKLINE> -- <interactive>:... -- Occurs check: cannot construct the infinite type: n1 ~ n1 + 1 -- Expected type: a -> Vec n1 a -> Vec n1 a -- Actual type: a -> Vec n1 a -> Vec (n1 + 1) a -- Relevant bindings include -- ys :: Vec n1 a (bound at ...) -- append' :: Vec n a -> Vec n1 a -> Vec n1 a -- (bound at ...) -- In the first argument of ‘foldr’, namely ‘(:>)’ -- In the expression: foldr (:>) ys xs -- -- The reason is that the type of 'foldr' is: -- -- >>> :t foldr -- foldr :: (a -> b -> b) -> b -> Vec n a -> b -- -- While the type of (':>') is: -- -- >>> :t (:>) -- (:>) :: a -> Vec n a -> Vec (n + 1) a -- -- We thus need a @fold@ function that can handle the growing vector type: -- 'dfold'. Compared to 'foldr', 'dfold' takes an extra parameter, called the -- /motive/, that allows the folded function to have an argument and result type -- that /depends/ on the current index into the vector. Using 'dfold', we can -- now correctly define ('++'): -- -- @ -- import Data.Singletons.Prelude -- import Data.Proxy -- -- data Append (m :: Nat) (a :: *) (f :: 'TyFun' Nat *) :: * -- type instance 'Apply' (Append m a) l = 'Vec' (l + m) a -- -- append' xs ys = 'dfold' (Proxy :: Proxy (Append m a)) (const (':>')) ys xs -- @ -- -- We now see that @append'@ has the appropriate type: -- -- >>> :t append' -- append' :: Vec k a -> Vec m a -> Vec (k + m) a -- -- And that it works: -- -- >>> append' (1 :> 2 :> Nil) (3 :> 4 :> Nil) -- <1,2,3,4> dfold :: Proxy (p :: TyFun Nat * -> *) -- ^ The /motive/ -> (forall l . Proxy l -> a -> p $ l -> p $ (l + 1)) -- ^ Function to fold -> (p $ 0) -- ^ Initial element -> Vec k a -- ^ Vector to fold over -> p $ k dfold _ _ z Nil = z dfold p f z (x :> (xs :: Vec l a)) = f (Proxy :: Proxy l) x (dfold p f z xs) data V (a :: *) (f :: TyFun Nat *) :: * type instance Apply (V a) l = Vec l a {-# NOINLINE vfold #-} -- | Specialised version of 'dfold' that builds a triangular computational -- structure. -- -- __NB__: Not synthesisable -- -- Example: -- -- @ -- cs a b = if a > b then (a,b) else (b,a) -- csRow y xs = let (y',xs') = 'mapAccumL' cs y xs in xs' '<:' y' -- csSort = 'vfold' csRow -- @ -- -- Builds a triangular structure of compare and swaps to sort a row. -- -- >>> csSort (7 :> 3 :> 9 :> 1 :> Nil) -- <1,3,7,9> vfold :: (forall l . a -> Vec l b -> Vec (l + 1) b) -> Vec k a -> Vec k b vfold f xs = dfold (Proxy :: Proxy (V a)) (const f) Nil xs instance (KnownNat n, KnownNat (BitSize a), BitPack a) => BitPack (Vec n a) where type BitSize (Vec n a) = n * (BitSize a) pack = concatBitVector# . map pack unpack = map unpack . unconcatBitVector# {-# NOINLINE concatBitVector# #-} concatBitVector# :: KnownNat m => Vec n (BitVector m) -> BitVector (n * m) concatBitVector# = concatBitVector' . reverse where concatBitVector' :: KnownNat m => Vec n (BitVector m) -> BitVector (n * m) concatBitVector' Nil = 0 concatBitVector' (x :> xs) = concatBitVector' xs ++# x {-# NOINLINE unconcatBitVector# #-} unconcatBitVector# :: (KnownNat n, KnownNat m) => BitVector (n * m) -> Vec n (BitVector m) unconcatBitVector# bv = withSNat (\s -> ucBV (toUNat s) bv) {-# INLINE ucBV #-} ucBV :: forall n m . KnownNat m => UNat n -> BitVector (n * m) -> Vec n (BitVector m) ucBV UZero _ = Nil ucBV (USucc n) bv = let (bv',x :: BitVector m) = split# bv in ucBV n bv' <: x instance Lift a => Lift (Vec n a) where lift Nil = [| Nil |] lift (x:>xs) = [| x :> $(lift xs) |] instance (KnownNat n, Arbitrary a) => Arbitrary (Vec n a) where arbitrary = sequence $ repeat arbitrary shrink = sequence . fmap shrink instance CoArbitrary a => CoArbitrary (Vec n a) where coarbitrary = coarbitrary . toList type instance Index (Vec n a) = Int type instance IxValue (Vec n a) = a instance KnownNat n => Ixed (Vec n a) where ix i f xs = replace_int xs i <$> f (index_int xs i)