{-| Copyright : (C) 2013-2016, University of Twente, 2016 , Myrtle Software Ltd License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij -} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE Unsafe #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} {-# OPTIONS_HADDOCK show-extensions not-home #-} module Clash.Sized.Internal.Unsigned ( -- * Datatypes Unsigned (..) -- * Accessors -- ** Length information , size# -- * Type classes -- ** BitPack , pack# , unpack# -- ** Eq , eq# , neq# -- ** Ord , lt# , ge# , gt# , le# -- ** Enum (not synthesizable) , enumFrom# , enumFromThen# , enumFromTo# , enumFromThenTo# -- ** Bounded , minBound# , maxBound# -- ** Num , (+#) , (-#) , (*#) , negate# , fromInteger# -- ** ExtendingNum , plus# , minus# , times# -- ** Integral , quot# , rem# , toInteger# -- ** Bits , and# , or# , xor# , complement# , shiftL# , shiftR# , rotateL# , rotateR# -- ** Resize , resize# -- ** Conversions , unsignedToWord , unsigned8toWord8 , unsigned16toWord16 , unsigned32toWord32 ) where import Prelude hiding (even, odd) import Control.DeepSeq (NFData (..)) import Control.Lens (Index, Ixed (..), IxValue) import Data.Bits (Bits (..), FiniteBits (..)) import Data.Data (Data) import Data.Default.Class (Default (..)) import Data.Proxy (Proxy (..)) import Text.Read (Read (..), ReadPrec) import Text.Printf (PrintfArg (..)) import GHC.Exts (narrow8Word#, narrow16Word#, narrow32Word#) import GHC.Generics (Generic) import GHC.Integer.GMP.Internals (bigNatToWord) import GHC.Natural (Natural (..), naturalFromInteger) #if MIN_VERSION_base(4,12,0) import GHC.Natural (naturalToInteger) #endif import GHC.TypeLits (KnownNat, Nat, type (+), natVal) import GHC.TypeLits.Extra (Max) import GHC.Word (Word (..), Word8 (..), Word16 (..), Word32 (..)) import Language.Haskell.TH (TypeQ, appT, conT, litT, numTyLit, sigE) import Language.Haskell.TH.Syntax (Lift(..)) #if MIN_VERSION_template_haskell(2,16,0) import Language.Haskell.TH.Compat #endif import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..), arbitraryBoundedIntegral, coarbitraryIntegral) import Clash.Class.BitPack (BitPack (..), packXWith, bitCoerce) import Clash.Class.Num (ExtendingNum (..), SaturatingNum (..), SaturationMode (..)) import Clash.Class.Parity (Parity (..)) import Clash.Class.Resize (Resize (..)) import Clash.Prelude.BitIndex ((!), msb, replaceBit, split) import Clash.Prelude.BitReduction (reduceOr) import Clash.Promoted.Nat (natToNum) import Clash.Sized.Internal.BitVector (BitVector (BV), Bit, high, low, undefError) import qualified Clash.Sized.Internal.BitVector as BV import Clash.Sized.Internal.Mod import Clash.XException (ShowX (..), NFDataX (..), errorX, showsPrecXWith, rwhnfX) #include "MachDeps.h" -- | Arbitrary-width unsigned integer represented by @n@ bits -- -- Given @n@ bits, an 'Unsigned' @n@ number has a range of: [0 .. 2^@n@-1] -- -- __NB__: The 'Num' operators perform @wrap-around@ on overflow. If you want -- saturation on overflow, check out the 'SaturatingNum' class. -- -- >>> maxBound :: Unsigned 3 -- 7 -- >>> minBound :: Unsigned 3 -- 0 -- >>> read (show (maxBound :: Unsigned 3)) :: Unsigned 3 -- 7 -- >>> 1 + 2 :: Unsigned 3 -- 3 -- >>> 2 + 6 :: Unsigned 3 -- 0 -- >>> 1 - 3 :: Unsigned 3 -- 6 -- >>> 2 * 3 :: Unsigned 3 -- 6 -- >>> 2 * 4 :: Unsigned 3 -- 0 -- >>> (2 :: Unsigned 3) `mul` (4 :: Unsigned 3) :: Unsigned 6 -- 8 -- >>> (2 :: Unsigned 3) `add` (6 :: Unsigned 3) :: Unsigned 4 -- 8 -- >>> satAdd SatSymmetric 2 6 :: Unsigned 3 -- 7 -- >>> satSub SatSymmetric 2 3 :: Unsigned 3 -- 0 newtype Unsigned (n :: Nat) = -- | The constructor, 'U', and the field, 'unsafeToInteger', are not -- synthesizable. U { unsafeToNatural :: Natural } deriving (Data, Generic) {-# NOINLINE size# #-} size# :: KnownNat n => Unsigned n -> Int size# u = fromInteger (natVal u) instance NFData (Unsigned n) where rnf (U i) = rnf i `seq` () {-# NOINLINE rnf #-} -- NOINLINE is needed so that Clash doesn't trip on the "Unsigned ~# Natural" -- coercion instance Show (Unsigned n) where show (U i) = show i {-# NOINLINE show #-} instance ShowX (Unsigned n) where showsPrecX = showsPrecXWith showsPrec instance NFDataX (Unsigned n) where deepErrorX = errorX rnfX = rwhnfX -- | None of the 'Read' class' methods are synthesizable. instance KnownNat n => Read (Unsigned n) where readPrec = fromIntegral <$> (readPrec :: ReadPrec Natural) instance KnownNat n => BitPack (Unsigned n) where type BitSize (Unsigned n) = n pack = packXWith pack# unpack = unpack# {-# NOINLINE pack# #-} pack# :: Unsigned n -> BitVector n pack# (U i) = BV 0 i {-# NOINLINE unpack# #-} unpack# :: KnownNat n => BitVector n -> Unsigned n unpack# (BV 0 i) = U i unpack# bv = undefError "Unsigned.unpack" [bv] instance Eq (Unsigned n) where (==) = eq# (/=) = neq# {-# NOINLINE eq# #-} eq# :: Unsigned n -> Unsigned n -> Bool eq# (U v1) (U v2) = v1 == v2 {-# NOINLINE neq# #-} neq# :: Unsigned n -> Unsigned n -> Bool neq# (U v1) (U v2) = v1 /= v2 instance Ord (Unsigned n) where (<) = lt# (>=) = ge# (>) = gt# (<=) = le# lt#,ge#,gt#,le# :: Unsigned n -> Unsigned n -> Bool {-# NOINLINE lt# #-} lt# (U n) (U m) = n < m {-# NOINLINE ge# #-} ge# (U n) (U m) = n >= m {-# NOINLINE gt# #-} gt# (U n) (U m) = n > m {-# NOINLINE le# #-} le# (U n) (U m) = n <= m -- | The functions: 'enumFrom', 'enumFromThen', 'enumFromTo', and -- 'enumFromThenTo', are not synthesizable. instance KnownNat n => Enum (Unsigned n) where succ = (+# fromInteger# 1) pred = (-# fromInteger# 1) toEnum = fromInteger# . toInteger fromEnum = fromEnum . toInteger# enumFrom = enumFrom# enumFromThen = enumFromThen# enumFromTo = enumFromTo# enumFromThenTo = enumFromThenTo# enumFrom# :: forall n. KnownNat n => Unsigned n -> [Unsigned n] enumFrom# = \x -> map (U . (`mod` m)) [unsafeToNatural x .. unsafeToNatural (maxBound :: Unsigned n)] where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE enumFrom# #-} enumFromThen# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n] enumFromThen# = \x y -> toUnsigneds [unsafeToNatural x, unsafeToNatural y .. bound x y] where toUnsigneds = map (U . (`mod` m)) bound x y = unsafeToNatural (if x <= y then maxBound else minBound :: Unsigned n) m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE enumFromThen# #-} enumFromTo# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> [Unsigned n] enumFromTo# = \x y -> map (U . (`mod` m)) [unsafeToNatural x .. unsafeToNatural y] where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE enumFromTo# #-} enumFromThenTo# :: forall n. KnownNat n => Unsigned n -> Unsigned n -> Unsigned n -> [Unsigned n] enumFromThenTo# = \x1 x2 y -> map (U . (`mod` m)) [unsafeToNatural x1, unsafeToNatural x2 .. unsafeToNatural y] where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE enumFromThenTo# #-} instance KnownNat n => Bounded (Unsigned n) where minBound = minBound# maxBound = maxBound# minBound# :: Unsigned n minBound# = U 0 {-# NOINLINE minBound# #-} maxBound# :: forall n. KnownNat n => Unsigned n maxBound# = let m = 1 `shiftL` (natToNum @n) in U (m - 1) {-# NOINLINE maxBound# #-} instance KnownNat n => Num (Unsigned n) where (+) = (+#) (-) = (-#) (*) = (*#) negate = negate# abs = id signum bv = resize# (unpack# (BV.pack# (reduceOr bv))) fromInteger = fromInteger# (+#),(-#),(*#) :: forall n . KnownNat n => Unsigned n -> Unsigned n -> Unsigned n {-# NOINLINE (+#) #-} (+#) = \(U i) (U j) -> U (addMod m i j) where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE (-#) #-} (-#) = \(U i) (U j) -> U (subMod m i j) where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE (*#) #-} (*#) = \(U i) (U j) -> U (mulMod2 m i j) where m = (1 `shiftL` fromInteger (natVal (Proxy @n))) - 1 {-# NOINLINE negate# #-} negate# :: forall n . KnownNat n => Unsigned n -> Unsigned n negate# = \(U i) -> U (negateMod m i) where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE fromInteger# #-} fromInteger# :: forall n . KnownNat n => Integer -> Unsigned n fromInteger# = \x -> U (naturalFromInteger (x `mod` m)) where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) instance (KnownNat m, KnownNat n) => ExtendingNum (Unsigned m) (Unsigned n) where type AResult (Unsigned m) (Unsigned n) = Unsigned (Max m n + 1) add = plus# sub = minus# type MResult (Unsigned m) (Unsigned n) = Unsigned (m + n) mul = times# {-# NOINLINE plus# #-} plus# :: Unsigned m -> Unsigned n -> Unsigned (Max m n + 1) plus# (U a) (U b) = U (a + b) {-# NOINLINE minus# #-} minus# :: forall m n . (KnownNat m, KnownNat n) => Unsigned m -> Unsigned n -> Unsigned (Max m n + 1) minus# = \(U a) (U b) -> U (subMod mask a b) where sz = fromInteger (natVal (Proxy @(Max m n + 1))) mask = 1 `shiftL` sz {-# NOINLINE times# #-} times# :: Unsigned m -> Unsigned n -> Unsigned (m + n) times# (U a) (U b) = U (a * b) instance KnownNat n => Real (Unsigned n) where toRational = toRational . toInteger# instance KnownNat n => Integral (Unsigned n) where quot = quot# rem = rem# div = quot# mod = rem# quotRem n d = (n `quot#` d,n `rem#` d) divMod n d = (n `quot#` d,n `rem#` d) toInteger = toInteger# quot#,rem# :: Unsigned n -> Unsigned n -> Unsigned n {-# NOINLINE quot# #-} quot# (U i) (U j) = U (i `quot` j) {-# NOINLINE rem# #-} rem# (U i) (U j) = U (i `rem` j) {-# NOINLINE toInteger# #-} toInteger# :: Unsigned n -> Integer toInteger# (U i) = naturalToInteger i instance KnownNat n => PrintfArg (Unsigned n) where formatArg = formatArg . toInteger instance KnownNat n => Parity (Unsigned n) where even = even . pack odd = odd . pack instance KnownNat n => Bits (Unsigned n) where (.&.) = and# (.|.) = or# xor = xor# complement = complement# zeroBits = 0 bit i = replaceBit i high 0 setBit v i = replaceBit i high v clearBit v i = replaceBit i low v complementBit v i = replaceBit i (BV.complement## (v ! i)) v testBit v i = v ! i == high bitSizeMaybe v = Just (size# v) bitSize = size# isSigned _ = False shiftL v i = shiftL# v i shiftR v i = shiftR# v i rotateL v i = rotateL# v i rotateR v i = rotateR# v i popCount u = popCount (pack# u) {-# NOINLINE and# #-} and# :: Unsigned n -> Unsigned n -> Unsigned n and# (U v1) (U v2) = U (v1 .&. v2) {-# NOINLINE or# #-} or# :: Unsigned n -> Unsigned n -> Unsigned n or# (U v1) (U v2) = U (v1 .|. v2) {-# NOINLINE xor# #-} xor# :: Unsigned n -> Unsigned n -> Unsigned n xor# (U v1) (U v2) = U (v1 `xor` v2) {-# NOINLINE complement# #-} complement# :: forall n . KnownNat n => Unsigned n -> Unsigned n complement# = \(U i) -> U (complementN i) where complementN = complementMod (natVal (Proxy @n)) shiftL#, shiftR#, rotateL#, rotateR# :: forall n .KnownNat n => Unsigned n -> Int -> Unsigned n {-# NOINLINE shiftL# #-} shiftL# = \(U v) i -> if i >= 0 then U ((shiftL v i) `mod` m) else error ("'shiftL undefined for negative number: " ++ show i) where m = 1 `shiftL` fromInteger (natVal (Proxy @n)) {-# NOINLINE shiftR# #-} -- shiftR# doesn't need the KnownNat constraint -- But having the same type signature for all shift and rotate functions -- makes implementing the Evaluator easier. shiftR# (U v) i | i < 0 = error $ "'shiftR undefined for negative number: " ++ show i | otherwise = U (shiftR v i) {-# NOINLINE rotateL# #-} rotateL# = \(U n) b -> if b >= 0 then let l = shiftL n b' r = shiftR n b'' b' = b `mod` sz b'' = sz - b' in U ((l .|. r) `mod` m) else error "'rotateL undefined for negative numbers" where sz = fromInteger (natVal (Proxy @n)) :: Int m = 1 `shiftL` sz {-# NOINLINE rotateR# #-} rotateR# = \(U n) b -> if b >= 0 then let l = shiftR n b' r = shiftL n b'' b' = b `mod` sz b'' = sz - b' in U ((l .|. r) `mod` m) else error "'rotateR undefined for negative numbers" where sz = fromInteger (natVal (Proxy @n)) :: Int m = 1 `shiftL` sz instance KnownNat n => FiniteBits (Unsigned n) where finiteBitSize = size# countLeadingZeros u = countLeadingZeros (pack# u) countTrailingZeros u = countTrailingZeros (pack# u) instance Resize Unsigned where resize = resize# zeroExtend = extend truncateB = resize# {-# NOINLINE resize# #-} resize# :: forall n m . KnownNat m => Unsigned n -> Unsigned m resize# = \(U i) -> if i >= m then U (i `mod` m) else U i where m = 1 `shiftL` fromInteger (natVal (Proxy @m)) instance Default (Unsigned n) where def = minBound# instance KnownNat n => Lift (Unsigned n) where lift u@(U i) = sigE [| fromInteger# i |] (decUnsigned (natVal u)) {-# NOINLINE lift #-} #if MIN_VERSION_template_haskell(2,16,0) liftTyped = liftTypedFromUntyped #endif decUnsigned :: Integer -> TypeQ decUnsigned n = appT (conT ''Unsigned) (litT $ numTyLit n) instance KnownNat n => SaturatingNum (Unsigned n) where satAdd SatWrap a b = a +# b satAdd SatZero a b = let r = plus# a b in case msb r of 0 -> resize# r _ -> minBound# satAdd _ a b = let r = plus# a b in case msb r of 0 -> resize# r _ -> maxBound# satSub SatWrap a b = a -# b satSub _ a b = let r = minus# a b in case msb r of 0 -> resize# r _ -> minBound# satMul SatWrap a b = a *# b satMul SatZero a b = let r = times# a b (rL,rR) = split r in case rL of 0 -> unpack# rR _ -> minBound# satMul _ a b = let r = times# a b (rL,rR) = split r in case rL of 0 -> unpack# rR _ -> maxBound# instance KnownNat n => Arbitrary (Unsigned n) where arbitrary = arbitraryBoundedIntegral shrink = BV.shrinkSizedUnsigned instance KnownNat n => CoArbitrary (Unsigned n) where coarbitrary = coarbitraryIntegral type instance Index (Unsigned n) = Int type instance IxValue (Unsigned n) = Bit instance KnownNat n => Ixed (Unsigned n) where ix i f s = unpack# <$> BV.replaceBit# (pack# s) i <$> f (BV.index# (pack# s) i) unsignedToWord :: Unsigned WORD_SIZE_IN_BITS -> Word unsignedToWord (U (NatS# u#)) = W# u# unsignedToWord (U (NatJ# u#)) = W# (bigNatToWord u#) {-# NOINLINE unsignedToWord #-} unsigned8toWord8 :: Unsigned 8 -> Word8 unsigned8toWord8 (U (NatS# u#)) = W8# (narrow8Word# u#) unsigned8toWord8 (U (NatJ# u#)) = W8# (narrow8Word# (bigNatToWord u#)) {-# NOINLINE unsigned8toWord8 #-} unsigned16toWord16 :: Unsigned 16 -> Word16 unsigned16toWord16 (U (NatS# u#)) = W16# (narrow16Word# u#) unsigned16toWord16 (U (NatJ# u#)) = W16# (narrow16Word# (bigNatToWord u#)) {-# NOINLINE unsigned16toWord16 #-} unsigned32toWord32 :: Unsigned 32 -> Word32 unsigned32toWord32 (U (NatS# u#)) = W32# (narrow32Word# u#) unsigned32toWord32 (U (NatJ# u#)) = W32# (narrow32Word# (bigNatToWord u#)) {-# NOINLINE unsigned32toWord32 #-} {-# RULES "bitCoerce/Unsigned WORD_SIZE_IN_BITS -> Word" bitCoerce = unsignedToWord "bitCoerce/Unsigned 8 -> Word8" bitCoerce = unsigned8toWord8 "bitCoerce/Unsigned 16 -> Word16" bitCoerce = unsigned16toWord16 "bitCoerce/Unsigned 32 -> Word32" bitCoerce = unsigned32toWord32 #-}