```
-- | Young tableaux and similar gadgets.
--   See e.g. William Fulton: Young Tableaux, with Applications to
--   Representation theory and Geometry (CUP 1997).
--
--   The convention is that we use
--   the English notation, and we store the tableaux as lists of the rows.
--
--   That is, the following standard tableau of shape [5,4,1]
--
-- >  1  3  4  6  7
-- >  2  5  8 10
-- >  9
--
--   is encoded conveniently as
--
-- > [ [ 1 , 3 , 4 , 6 , 7 ]
-- > , [ 2 , 5 , 8 ,10 ]
-- > , [ 9 ]
-- > ]
--

module Math.Combinat.Tableaux where

import Data.List

import Math.Combinat.Helper
import Math.Combinat.Partitions

-------------------------------------------------------
-- * Basic stuff

type Tableau a = [[a]]

_shape :: Tableau a -> [Int]
_shape t = map length t

shape :: Tableau a -> Partition
shape t = toPartition (_shape t)

dualTableau :: Tableau a -> Tableau a
dualTableau = transpose

hooks :: Partition -> Tableau Int
hooks part = zipWith f p [1..] where
p = fromPartition part
q = _dualPartition p
f l i = zipWith (\x y -> x+y-i) q [l,l-1..1]

-------------------------------------------------------
-- * Row and column words

rowWord :: Tableau a -> [a]
rowWord = concat . reverse

rowWordToTableau :: Ord a => [a] -> Tableau a
rowWordToTableau xs = reverse rows where
rows = break xs
break [] = [[]]
break [x] = [[x]]
break (x:xs@(y:_)) = if x>y
then [x] : break xs
else let (h:t) = break xs in (x:h):t

columnWord :: Tableau a -> [a]
columnWord = rowWord . transpose

columnWordToTableau :: Ord a => [a] -> Tableau a
columnWordToTableau = transpose . rowWordToTableau

-------------------------------------------------------
-- * Standard Young tableaux

-- | Standard Young tableaux of a given shape.
--   Adapted from John Stembridge,
--   <http://www.math.lsa.umich.edu/~jrs/software/SFexamples/tableaux>.
standardYoungTableaux :: Partition -> [Tableau Int]
standardYoungTableaux shape' = map rev \$ tableaux shape where
shape = fromPartition shape'
rev = reverse . map reverse
tableaux :: [Int] -> [Tableau Int]
tableaux p =
case p of
[]  -> [[]]
[n] -> [[[n,n-1..1]]]
_   -> worker (n,k) 0 [] p
where
n = sum p
k = length p
worker :: (Int,Int) -> Int -> [Int] -> [Int] -> [Tableau Int]
worker _ _ _ [] = []
worker nk i ls (x:rs) = case rs of
(y:_) -> if x==y
then worker nk (i+1) (x:ls) rs
else worker2 nk i ls x rs
[] ->  worker2 nk i ls x rs
worker2 :: (Int,Int) -> Int -> [Int] -> Int -> [Int] -> [Tableau Int]
worker2 nk@(n,k) i ls x rs = new ++ worker nk (i+1) (x:ls) rs where
old = if x>1
then             tableaux \$ reverse ls ++ (x-1) : rs
else map ([]:) \$ tableaux \$ reverse ls ++ rs
a = k-1-i
new = {- debug ( i , a , head old , f a (head old) ) \$ -}
map (f a) old
f :: Int -> Tableau Int -> Tableau Int
f _ [] = []
f 0 (t:ts) = (n:t) : f (-1) ts
f j (t:ts) = t : f (j-1) ts

-- | hook-length formula
countStandardYoungTableaux :: Partition -> Integer
countStandardYoungTableaux part = {- debug (hooks part) \$ -}
factorial n `div` h where
h = product \$ map fromIntegral \$ concat \$ hooks part
n = weight part

-------------------------------------------------------

```