{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Comonad -- Copyright : (C) 2008-2011 Edward Kmett, -- (C) 2004 Dave Menendez -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Control.Comonad ( -- * Extendable Functors Extend(..) , (=>=) , (=<=) , (<<=) , (=>>) -- * Comonads -- $definition , Comonad(..) , liftW -- :: Comonad w => (a -> b) -> w a -> w b , wfix -- :: Comonad w => w (w a -> a) -> a -- * Cokleisli Arrows , Cokleisli(..) ) where import Prelude hiding (id, (.)) import Control.Applicative import Control.Arrow import Control.Category import Control.Monad.Trans.Identity import Data.Functor.Identity import Data.Functor.Extend import Data.List.NonEmpty import Data.Typeable import Data.Semigroup import Data.Tree {- | $definition -} class Extend w => Comonad w where -- | -- > extract . fmap f = f . extract extract :: w a -> a -- | A suitable default definition for 'fmap' for a 'Comonad'. -- Promotes a function to a comonad. -- -- > fmap f = extend (f . extract) liftW :: Comonad w => (a -> b) -> w a -> w b liftW f = extend (f . extract) {-# INLINE liftW #-} -- | Comonadic fixed point wfix :: Comonad w => w (w a -> a) -> a wfix w = extract w (extend wfix w) -- * Comonads for Prelude types: -- -- Instances: While Control.Comonad.Instances would be more symmetric -- to the definition of Control.Monad.Instances in base, the reason -- the latter exists is because of Haskell 98 specifying the types -- @'Either' a@, @((,)m)@ and @((->)e)@ and the class Monad without -- having the foresight to require or allow instances between them. -- Here Haskell 98 says nothing about Comonads, so we can include the -- instances directly avoiding the wart of orphan instances. instance Comonad ((,)e) where extract = snd instance (Semigroup m, Monoid m) => Comonad ((->)m) where extract f = f mempty -- * Comonads for types from 'transformers'. -- -- This isn't really a transformer, so i have no compunction about including the instance here. -- -- TODO: Petition to move Data.Functor.Identity into base instance Comonad Identity where extract = runIdentity -- Provided to avoid an orphan instance. Not proposed to standardize. -- If Comonad moved to base, consider moving instance into transformers? instance Comonad w => Comonad (IdentityT w) where extract = extract . runIdentityT instance Comonad Tree where extract (Node a _) = a -- | The 'Cokleisli' 'Arrow's of a given 'Comonad' newtype Cokleisli w a b = Cokleisli { runCokleisli :: w a -> b } instance Typeable1 w => Typeable2 (Cokleisli w) where typeOf2 twab = mkTyConApp cokleisliTyCon [typeOf1 (wa twab)] where wa :: Cokleisli w a b -> w a wa = undefined cokleisliTyCon :: TyCon #if MIN_VERSION_base(4,4,0) cokleisliTyCon = mkTyCon3 "comonad" "Control.Comonad" "Cokleisli" #else cokleisliTyCon = mkTyCon "Control.Comonad.Cokleisli" #endif {-# NOINLINE cokleisliTyCon #-} instance Comonad w => Category (Cokleisli w) where id = Cokleisli extract Cokleisli f . Cokleisli g = Cokleisli (f =<= g) instance Comonad w => Arrow (Cokleisli w) where arr f = Cokleisli (f . extract) first f = f *** id second f = id *** f Cokleisli f *** Cokleisli g = Cokleisli (f . fmap fst &&& g . fmap snd) Cokleisli f &&& Cokleisli g = Cokleisli (f &&& g) instance Comonad w => ArrowApply (Cokleisli w) where app = Cokleisli $ \w -> runCokleisli (fst (extract w)) (snd <$> w) instance Comonad w => ArrowChoice (Cokleisli w) where left = leftApp -- Cokleisli arrows are actually just a special case of a reader monad: instance Functor (Cokleisli w a) where fmap f (Cokleisli g) = Cokleisli (f . g) instance Applicative (Cokleisli w a) where pure = Cokleisli . const Cokleisli f <*> Cokleisli a = Cokleisli (\w -> (f w) (a w)) instance Monad (Cokleisli w a) where return = Cokleisli . const Cokleisli k >>= f = Cokleisli $ \w -> runCokleisli (f (k w)) w instance Comonad NonEmpty where extract ~(a :| _) = a {- $definition There are two ways to define a comonad: I. Provide definitions for 'extract' and 'extend' satisfying these laws: > extend extract = id > extract . extend f = f > extend f . extend g = extend (f . extend g) In this case, you may simply set 'fmap' = 'liftW'. These laws are directly analogous to the laws for monads and perhaps can be made clearer by viewing them as laws stating that Cokleisli composition must be associative, and has extract for a unit: > f =>= extract = f > extract =>= f = f > (f =>= g) =>= h = f =>= (g =>= h) II. Alternately, you may choose to provide definitions for 'fmap', 'extract', and 'duplicate' satisfying these laws: > extract . duplicate = id > fmap extract . duplicate = id > duplicate . duplicate = fmap duplicate . duplicate In this case you may not rely on the ability to define 'fmap' in terms of 'liftW'. You may of course, choose to define both 'duplicate' /and/ 'extend'. In that case you must also satisfy these laws: > extend f = fmap f . duplicate > duplicate = extend id > fmap f = extend (f . extract) These are the default definitions of 'extend' and'duplicate' and the definition of 'liftW' respectively. -}