{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE UndecidableInstances #-} -------------------------------------------------------------------------------- -- | -- Module : Data.Comp.Ops -- Copyright : (c) 2011 Patrick Bahr -- License : BSD3 -- Maintainer : Patrick Bahr -- Stability : experimental -- Portability : non-portable (GHC Extensions) -- -- This module provides operators on higher-order functors. All definitions are -- generalised versions of those in "Data.Comp.Ops". -- -------------------------------------------------------------------------------- module Data.Comp.Multi.Ops ( module Data.Comp.Multi.Ops , (O.:*:)(..) , O.ffst , O.fsnd ) where import Control.Applicative import Control.Monad import Data.Comp.Multi.HFoldable import Data.Comp.Multi.HFunctor import Data.Comp.Multi.HTraversable import qualified Data.Comp.Ops as O import Data.Comp.SubsumeCommon infixr 6 :+: -- |Data type defining coproducts. data (f :+: g) (h :: * -> *) e = Inl (f h e) | Inr (g h e) {-| Utility function to case on a higher-order functor sum, without exposing the internal representation of sums. -} caseH :: (f a b -> c) -> (g a b -> c) -> (f :+: g) a b -> c caseH f g x = case x of Inl x -> f x Inr x -> g x instance (HFunctor f, HFunctor g) => HFunctor (f :+: g) where hfmap f (Inl v) = Inl $ hfmap f v hfmap f (Inr v) = Inr $ hfmap f v instance (HFoldable f, HFoldable g) => HFoldable (f :+: g) where hfold (Inl e) = hfold e hfold (Inr e) = hfold e hfoldMap f (Inl e) = hfoldMap f e hfoldMap f (Inr e) = hfoldMap f e hfoldr f b (Inl e) = hfoldr f b e hfoldr f b (Inr e) = hfoldr f b e hfoldl f b (Inl e) = hfoldl f b e hfoldl f b (Inr e) = hfoldl f b e hfoldr1 f (Inl e) = hfoldr1 f e hfoldr1 f (Inr e) = hfoldr1 f e hfoldl1 f (Inl e) = hfoldl1 f e hfoldl1 f (Inr e) = hfoldl1 f e instance (HTraversable f, HTraversable g) => HTraversable (f :+: g) where htraverse f (Inl e) = Inl <$> htraverse f e htraverse f (Inr e) = Inr <$> htraverse f e hmapM f (Inl e) = Inl `liftM` hmapM f e hmapM f (Inr e) = Inr `liftM` hmapM f e -- The subsumption relation. infixl 5 :<: infixl 5 :=: type family Elem (f :: (* -> *) -> * -> *) (g :: (* -> *) -> * -> *) :: Emb where Elem f f = Found Here Elem (f1 :+: f2) g = Sum' (Elem f1 g) (Elem f2 g) Elem f (g1 :+: g2) = Choose (Elem f g1) (Elem f g2) Elem f g = NotFound class Subsume (e :: Emb) (f :: (* -> *) -> * -> *) (g :: (* -> *) -> * -> *) where inj' :: Proxy e -> f a :-> g a prj' :: Proxy e -> NatM Maybe (g a) (f a) instance Subsume (Found Here) f f where inj' _ = id prj' _ = Just instance Subsume (Found p) f g => Subsume (Found (Le p)) f (g :+: g') where inj' _ = Inl . inj' (P :: Proxy (Found p)) prj' _ (Inl x) = prj' (P :: Proxy (Found p)) x prj' _ _ = Nothing instance Subsume (Found p) f g => Subsume (Found (Ri p)) f (g' :+: g) where inj' _ = Inr . inj' (P :: Proxy (Found p)) prj' _ (Inr x) = prj' (P :: Proxy (Found p)) x prj' _ _ = Nothing instance (Subsume (Found p1) f1 g, Subsume (Found p2) f2 g) => Subsume (Found (Sum p1 p2)) (f1 :+: f2) g where inj' _ (Inl x) = inj' (P :: Proxy (Found p1)) x inj' _ (Inr x) = inj' (P :: Proxy (Found p2)) x prj' _ x = case prj' (P :: Proxy (Found p1)) x of Just y -> Just (Inl y) _ -> case prj' (P :: Proxy (Found p2)) x of Just y -> Just (Inr y) _ -> Nothing -- | A constraint @f :<: g@ expresses that the signature @f@ is -- subsumed by @g@, i.e. @f@ can be used to construct elements in @g@. type f :<: g = (Subsume (ComprEmb (Elem f g)) f g) inj :: forall f g a . (f :<: g) => f a :-> g a inj = inj' (P :: Proxy (ComprEmb (Elem f g))) proj :: forall f g a . (f :<: g) => NatM Maybe (g a) (f a) proj = prj' (P :: Proxy (ComprEmb (Elem f g))) type f :=: g = (f :<: g, g :<: f) spl :: (f :=: f1 :+: f2) => (f1 a :-> b) -> (f2 a :-> b) -> f a :-> b spl f1 f2 x = case inj x of Inl y -> f1 y Inr y -> f2 y -- Constant Products infixr 7 :&: -- | This data type adds a constant product to a -- signature. Alternatively, this could have also been defined as -- -- @ -- data (f :&: a) (g :: * -> *) e = f g e :&: a e -- @ -- -- This is too general, however, for example for 'productHHom'. data (f :&: a) (g :: * -> *) e = f g e :&: a instance (HFunctor f) => HFunctor (f :&: a) where hfmap f (v :&: c) = hfmap f v :&: c instance (HFoldable f) => HFoldable (f :&: a) where hfold (v :&: _) = hfold v hfoldMap f (v :&: _) = hfoldMap f v hfoldr f e (v :&: _) = hfoldr f e v hfoldl f e (v :&: _) = hfoldl f e v hfoldr1 f (v :&: _) = hfoldr1 f v hfoldl1 f (v :&: _) = hfoldl1 f v instance (HTraversable f) => HTraversable (f :&: a) where htraverse f (v :&: c) = (:&: c) <$> (htraverse f v) hmapM f (v :&: c) = liftM (:&: c) (hmapM f v) -- | This class defines how to distribute an annotation over a sum of -- signatures. class DistAnn (s :: (* -> *) -> * -> *) p s' | s' -> s, s' -> p where -- | This function injects an annotation over a signature. injectA :: p -> s a :-> s' a projectA :: s' a :-> (s a O.:&: p) class RemA (s :: (* -> *) -> * -> *) s' | s -> s' where remA :: s a :-> s' a instance (RemA s s') => RemA (f :&: p :+: s) (f :+: s') where remA (Inl (v :&: _)) = Inl v remA (Inr v) = Inr $ remA v instance RemA (f :&: p) f where remA (v :&: _) = v instance DistAnn f p (f :&: p) where injectA p v = v :&: p projectA (v :&: p) = v O.:&: p instance (DistAnn s p s') => DistAnn (f :+: s) p ((f :&: p) :+: s') where injectA p (Inl v) = Inl (v :&: p) injectA p (Inr v) = Inr $ injectA p v projectA (Inl (v :&: p)) = (Inl v O.:&: p) projectA (Inr v) = let (v' O.:&: p) = projectA v in (Inr v' O.:&: p)