{-# LANGUAGE GADTs, RankNTypes, ScopedTypeVariables, TypeOperators, FlexibleContexts, CPP #-} -------------------------------------------------------------------------------- -- | -- Module : Data.Comp.Algebra -- Copyright : (c) 2010-2011 Patrick Bahr, Tom Hvitved -- License : BSD3 -- Maintainer : Patrick Bahr -- Stability : experimental -- Portability : non-portable (GHC Extensions) -- -- This module defines the notion of algebras and catamorphisms, and their -- generalizations to e.g. monadic versions and other (co)recursion schemes. -- -------------------------------------------------------------------------------- module Data.Comp.Algebra ( -- * Algebras & Catamorphisms Alg, free, cata, cata', appCxt, -- * Monadic Algebras & Catamorphisms AlgM, algM, freeM, cataM, cataM', -- * Term Homomorphisms CxtFun, SigFun, TermHom, appTermHom, compTermHom, appSigFun, compSigFun, termHom, compAlg, compCoalg, compCVCoalg, -- * Monadic Term Homomorphisms CxtFunM, SigFunM, TermHomM, SigFunM', TermHomM', sigFunM, termHom', appTermHomM, termHomM, termHomM', appSigFunM, appSigFunM', compTermHomM, compSigFunM, compAlgM, compAlgM', -- * Coalgebras & Anamorphisms Coalg, ana, ana', CoalgM, anaM, -- * R-Algebras & Paramorphisms RAlg, para, RAlgM, paraM, -- * R-Coalgebras & Apomorphisms RCoalg, apo, RCoalgM, apoM, -- * CV-Algebras & Histomorphisms CVAlg, histo, CVAlgM, histoM, -- * CV-Coalgebras & Futumorphisms CVCoalg, futu, CVCoalg', futu', CVCoalgM, futuM ) where import Data.Comp.Term import Data.Comp.Ops import Data.Traversable import Control.Monad hiding (sequence, mapM) import Prelude hiding (sequence, mapM) {-| This type represents an algebra over a functor @f@ and carrier @a@. -} type Alg f a = f a -> a {-| Construct a catamorphism for contexts over @f@ with holes of type @a@, from the given algebra. -} free :: forall f h a b . (Functor f) => Alg f b -> (a -> b) -> Cxt h f a -> b free f g = run where run :: Cxt h f a -> b run (Hole x) = g x run (Term t) = f (fmap run t) {-| Construct a catamorphism from the given algebra. -} cata :: forall f a . (Functor f) => Alg f a -> Term f -> a {-# NOINLINE [1] cata #-} -- cata f = free f undefined -- the above definition is safe since terms do not contain holes -- -- a direct implementation: cata f = run where run :: Term f -> a run = f . fmap run . unTerm {-| A generalisation of 'cata' from terms over @f@ to contexts over @f@, where the holes have the type of the algebra carrier. -} cata' :: (Functor f) => Alg f a -> Cxt h f a -> a {-# INLINE cata' #-} cata' f = free f id {-| This function applies a whole context into another context. -} appCxt :: (Functor f) => Context f (Cxt h f a) -> Cxt h f a -- appCxt = cata' Term appCxt (Hole x) = x appCxt (Term t) = Term (fmap appCxt t) {-| This type represents a monadic algebra. It is similar to 'Alg' but the return type is monadic. -} type AlgM m f a = f a -> m a {-| Convert a monadic algebra into an ordinary algebra with a monadic carrier. -} algM :: (Traversable f, Monad m) => AlgM m f a -> Alg f (m a) algM f x = sequence x >>= f {-| Construct a monadic catamorphism for contexts over @f@ with holes of type @a@, from the given monadic algebra. -} freeM :: forall h f a m b. (Traversable f, Monad m) => AlgM m f b -> (a -> m b) -> Cxt h f a -> m b -- freeM alg var = free (algM alg) var freeM algm var = run where run :: Cxt h f a -> m b run (Hole x) = var x run (Term t) = algm =<< mapM run t {-| Construct a monadic catamorphism from the given monadic algebra. -} cataM :: forall f m a. (Traversable f, Monad m) => AlgM m f a -> Term f -> m a {-# NOINLINE [1] cataM #-} -- cataM = cata . algM cataM algm = run where run :: Term f -> m a run = algm <=< mapM run . unTerm {-| A generalisation of 'cataM' from terms over @f@ to contexts over @f@, where the holes have the type of the monadic algebra carrier. -} cataM' :: forall h f a m . (Traversable f, Monad m) => AlgM m f a -> Cxt h f a -> m a {-# NOINLINE [1] cataM' #-} -- cataM' f = free (\x -> sequence x >>= f) return cataM' f = run where run :: Cxt h f a -> m a run (Hole x) = return x run (Term t) = f =<< mapM run t {-| This type represents a context function. -} type CxtFun f g = forall a h. Cxt h f a -> Cxt h g a {-| This type represents a signature function.-} type SigFun f g = forall a. f a -> g a {-| This type represents a term homomorphism. -} type TermHom f g = SigFun f (Context g) {-| Apply a term homomorphism recursively to a term/context. -} appTermHom :: (Traversable f, Functor g) => TermHom f g -> CxtFun f g {-# INLINE [1] appTermHom #-} -- Constraint Traversable f is not essential and can be replaced by -- Functor f. It is, however, needed for the shortcut-fusion rules to -- work. appTermHom = appTermHom' {-| This function applies the given term homomorphism to a term/context. -} appTermHom' :: forall f g . (Functor f, Functor g) => TermHom f g -> CxtFun f g {-# NOINLINE [1] appTermHom' #-} -- Note: The rank 2 type polymorphism is not necessary. Alternatively, also the type -- (Functor f, Functor g) => (f (Cxt h g b) -> Context g (Cxt h g b)) -> Cxt h f b -> Cxt h g b -- would achieve the same. The given type is chosen for clarity. appTermHom' f = run where run :: CxtFun f g run (Hole x) = Hole x run (Term t) = appCxt (f (fmap run t)) {-| Compose two term homomorphisms. -} compTermHom :: (Functor g, Functor h) => TermHom g h -> TermHom f g -> TermHom f h -- Note: The rank 2 type polymorphism is not necessary. Alternatively, also the type -- (Functor f, Functor g) => (f (Cxt h g b) -> Context g (Cxt h g b)) -- -> (a -> Cxt h f b) -> a -> Cxt h g b -- would achieve the same. The given type is chosen for clarity. compTermHom f g = appTermHom' f . g {-| Compose an algebra with a term homomorphism to get a new algebra. -} compAlg :: (Functor g) => Alg g a -> TermHom f g -> Alg f a compAlg alg talg = cata' alg . talg {-| Compose a term homomorphism with a coalgebra to get a cv-coalgebra. -} compCoalg :: TermHom f g -> Coalg f a -> CVCoalg' g a compCoalg hom coa = hom . coa {-| Compose a term homomorphism with a cv-coalgebra to get a new cv-coalgebra. -} compCVCoalg :: (Functor f, Functor g) => TermHom f g -> CVCoalg' f a -> CVCoalg' g a compCVCoalg hom coa = appTermHom' hom . coa {-| This function applies a signature function to the given context. -} appSigFun :: (Functor f, Functor g) => SigFun f g -> CxtFun f g appSigFun f = appTermHom' $ termHom f {-| This function composes two signature functions. -} compSigFun :: SigFun g h -> SigFun f g -> SigFun f h compSigFun f g = f . g {-| Lifts the given signature function to the canonical term homomorphism. -} termHom :: (Functor g) => SigFun f g -> TermHom f g termHom f = simpCxt . f {-| This type represents a monadic context function. -} type CxtFunM m f g = forall a h. Cxt h f a -> m (Cxt h g a) {-| This type represents a monadic signature function. -} type SigFunM m f g = forall a. f a -> m (g a) {-| This type represents a monadic signature function. It is similar to 'SigFunM' but has monadic values also in the domain. -} type SigFunM' m f g = forall a. f (m a) -> m (g a) {-| This type represents a monadic term homomorphism. -} type TermHomM m f g = SigFunM m f (Context g) {-| This type represents a monadic term homomorphism. It is similar to 'TermHomM' but has monadic values also in the domain. -} type TermHomM' m f g = SigFunM' m f (Context g) {-| Lift the given signature function to a monadic signature function. Note that term homomorphisms are instances of signature functions. Hence this function also applies to term homomorphisms. -} sigFunM :: (Monad m) => SigFun f g -> SigFunM m f g sigFunM f = return . f {-| Lift the give monadic signature function to a monadic term homomorphism. -} termHom' :: (Functor f, Functor g, Monad m) => SigFunM m f g -> TermHomM m f g termHom' f = liftM (Term . fmap Hole) . f {-| Lift the given signature function to a monadic term homomorphism. -} termHomM :: (Functor g, Monad m) => SigFun f g -> TermHomM m f g termHomM f = sigFunM $ termHom f {-| Apply a monadic term homomorphism recursively to a term/context. -} appTermHomM :: forall f g m . (Traversable f, Functor g, Monad m) => TermHomM m f g -> CxtFunM m f g {-# NOINLINE [1] appTermHomM #-} appTermHomM f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM appCxt (f =<< mapM run t) {-| This function constructs the unique monadic homomorphism from the initial term algebra to the given term algebra. -} termHomM' :: forall f g m . (Traversable f, Functor g, Monad m) => TermHomM' m f g -> CxtFunM m f g termHomM' f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM appCxt (f (fmap run t)) {-| This function applies a monadic signature function to the given context. -} appSigFunM :: (Traversable f, Functor g, Monad m) => SigFunM m f g -> CxtFunM m f g appSigFunM f = appTermHomM $ termHom' f {-| This function applies a signature function to the given context. -} appSigFunM' :: forall f g m . (Traversable f, Functor g, Monad m) => SigFunM' m f g -> CxtFunM m f g appSigFunM' f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM Term (f (fmap run t)) {-| Compose two monadic term homomorphisms. -} compTermHomM :: (Traversable g, Functor h, Monad m) => TermHomM m g h -> TermHomM m f g -> TermHomM m f h compTermHomM f g = appTermHomM f <=< g {-| Compose a monadic algebra with a monadic term homomorphism to get a new monadic algebra. -} compAlgM :: (Traversable g, Monad m) => AlgM m g a -> TermHomM m f g -> AlgM m f a compAlgM alg talg = cataM' alg <=< talg {-| Compose a monadic algebra with a term homomorphism to get a new monadic algebra. -} compAlgM' :: (Traversable g, Monad m) => AlgM m g a -> TermHom f g -> AlgM m f a compAlgM' alg talg = cataM' alg . talg {-| This function composes two monadic signature functions. -} compSigFunM :: (Monad m) => SigFunM m g h -> SigFunM m f g -> SigFunM m f h compSigFunM f g a = g a >>= f ---------------- -- Coalgebras -- ---------------- {-| This type represents a coalgebra over a functor @f@ and carrier @a@. -} type Coalg f a = a -> f a {-| Construct an anamorphism from the given coalgebra. -} ana :: forall a f . Functor f => Coalg f a -> a -> Term f ana f = run where run :: a -> Term f run t = Term $ fmap run (f t) -- | Shortcut fusion variant of 'ana'. ana' :: forall a f . Functor f => Coalg f a -> a -> Term f ana' f t = build $ run t where run :: forall b . a -> Alg f b -> b run t con = run' t where run' :: a -> b run' t = con $ fmap run' (f t) build :: (forall a. Alg f a -> a) -> Term f {-# INLINE [1] build #-} build g = g Term {-| This type represents a monadic coalgebra over a functor @f@ and carrier @a@. -} type CoalgM m f a = a -> m (f a) {-| Construct a monadic anamorphism from the given monadic coalgebra. -} anaM :: forall a m f. (Traversable f, Monad m) => CoalgM m f a -> a -> m (Term f) anaM f = run where run :: a -> m (Term f) run t = liftM Term $ f t >>= mapM run -------------------------------- -- R-Algebras & Paramorphisms -- -------------------------------- {-| This type represents an r-algebra over a functor @f@ and carrier @a@. -} type RAlg f a = f (Term f, a) -> a {-| Construct a paramorphism from the given r-algebra. -} para :: (Functor f) => RAlg f a -> Term f -> a para f = snd . cata run where run t = (Term $ fmap fst t, f t) {-| This type represents a monadic r-algebra over a functor @f@ and carrier @a@. -} type RAlgM m f a = f (Term f, a) -> m a {-| Construct a monadic paramorphism from the given monadic r-algebra. -} paraM :: (Traversable f, Monad m) => RAlgM m f a -> Term f -> m a paraM f = liftM snd . cataM run where run t = do a <- f t return (Term $ fmap fst t, a) -------------------------------- -- R-Coalgebras & Apomorphisms -- -------------------------------- {-| This type represents an r-coalgebra over a functor @f@ and carrier @a@. -} type RCoalg f a = a -> f (Either (Term f) a) {-| Construct an apomorphism from the given r-coalgebra. -} apo :: (Functor f) => RCoalg f a -> a -> Term f apo f = run where run = Term . fmap run' . f run' (Left t) = t run' (Right a) = run a -- can also be defined in terms of anamorphisms (but less -- efficiently): -- apo f = ana run . Right -- where run (Left (Term t)) = fmap Left t -- run (Right a) = f a {-| This type represents a monadic r-coalgebra over a functor @f@ and carrier @a@. -} type RCoalgM m f a = a -> m (f (Either (Term f) a)) {-| Construct a monadic apomorphism from the given monadic r-coalgebra. -} apoM :: (Traversable f, Monad m) => RCoalgM m f a -> a -> m (Term f) apoM f = run where run a = do t <- f a t' <- mapM run' t return $ Term t' run' (Left t) = return t run' (Right a) = run a -- can also be defined in terms of anamorphisms (but less -- efficiently): -- apoM f = anaM run . Right -- where run (Left (Term t)) = return $ fmap Left t -- run (Right a) = f a ---------------------------------- -- CV-Algebras & Histomorphisms -- ---------------------------------- {-| This type represents a cv-algebra over a functor @f@ and carrier @a@. -} type CVAlg f a f' = f (Term f') -> a -- | This function applies 'projectP' at the tip of the term. projectTip :: (DistProd f a f') => Term f' -> (f (Term f'), a) projectTip (Term v) = projectP v {-| Construct a histomorphism from the given cv-algebra. -} histo :: (Functor f,DistProd f a f') => CVAlg f a f' -> Term f -> a histo alg = snd . projectTip . cata run where run v = Term $ injectP (alg v) v {-| This type represents a monadic cv-algebra over a functor @f@ and carrier @a@. -} type CVAlgM m f a f' = f (Term f') -> m a {-| Construct a monadic histomorphism from the given monadic cv-algebra. -} histoM :: (Traversable f, Monad m, DistProd f a f') => CVAlgM m f a f' -> Term f -> m a histoM alg = liftM (snd . projectTip) . cataM run where run v = do r <- alg v return $ Term $ injectP r v ----------------------------------- -- CV-Coalgebras & Futumorphisms -- ----------------------------------- {-| This type represents a cv-coalgebra over a functor @f@ and carrier @a@. -} type CVCoalg f a = a -> f (Context f a) {-| Construct a futumorphism from the given cv-coalgebra. -} futu :: forall f a . Functor f => CVCoalg f a -> a -> Term f futu coa = ana run . Hole where run :: Coalg f (Context f a) run (Hole x) = coa x run (Term t) = t {-| This type represents a monadic cv-coalgebra over a functor @f@ and carrier @a@. -} type CVCoalgM m f a = a -> m (f (Context f a)) {-| Construct a monadic futumorphism from the given monadic cv-coalgebra. -} futuM :: forall f a m . (Traversable f, Monad m) => CVCoalgM m f a -> a -> m (Term f) futuM coa = anaM run . Hole where run :: CoalgM m f (Context f a) run (Hole x) = coa x run (Term t) = return t {-| This type represents a generalised cv-coalgebra over a functor @f@ and carrier @a@. -} type CVCoalg' f a = a -> Context f a {-| Construct a futumorphism from the given generalised cv-coalgebra. -} futu' :: forall f a . Functor f => CVCoalg' f a -> a -> Term f futu' coa = run where run :: a -> Term f run x = appCxt $ fmap run (coa x) ------------------- -- rewrite rules -- ------------------- #ifndef NO_RULES {-# RULES "cata/appTermHom" forall (a :: Alg g d) (h :: TermHom f g) x. cata a (appTermHom h x) = cata (compAlg a h) x; "appTermHom/appTermHom" forall (a :: TermHom g h) (h :: TermHom f g) x. appTermHom a (appTermHom h x) = appTermHom (compTermHom a h) x; #-} {-# RULES "cataM/appTermHomM" forall (a :: AlgM m g d) (h :: TermHomM m f g) x. appTermHomM h x >>= cataM a = cataM (compAlgM a h) x; "cataM/appTermHom" forall (a :: AlgM m g d) (h :: TermHom f g) x. cataM a (appTermHom h x) = cataM (compAlgM' a h) x; "appTermHomM/appTermHomM" forall (a :: TermHomM m g h) (h :: TermHomM m f g) x. appTermHomM h x >>= appTermHomM a = appTermHomM (compTermHomM a h) x; #-} {-# RULES "cata/build" forall alg (g :: forall a . Alg f a -> a) . cata alg (build g) = g alg #-} #endif